forked from pdaian/flashboys2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalculate_slots.py
34 lines (28 loc) · 1.54 KB
/
calculate_slots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
from statistics import mean
import csv
import numpy as np
import csv_hack
arbitrageurs = {}
slotprices = {}
def add_to_count(arbitrageurs, arbitrageur):
if arbitrageur in arbitrageurs:
arbitrageurs[arbitrageur] += 1
else:
arbitrageurs[arbitrageur] = 1
slotsdict = csv.DictReader(open('data/gas_slots_6207336_6146507.csv'))
slotsdict = csv.DictReader(open('data/gas_slots.csv'))
for tx in slotsdict:
slot = int(tx['tx_position'])
if int(tx['gas_used']) < (int(tx['gas_limit']) * 0.6) and int(tx['gas_price']) > 310000000000 and tx['log_topics'].count("~") > 1 and not tx['to'].lower() in ["0xa62142888aba8370742be823c1782d17a0389da1", "0xdd9fd6b6f8f7ea932997992bbe67eabb3e316f3c"]:
print(tx['hash'], tx['from'], tx['to'])
add_to_count(arbitrageurs, tx['from'])
if not slot in slotprices:
slotprices[slot] = []
slotprices[slot].append(int(tx['gas_price']))
for arbitrageur in arbitrageurs.keys():
if arbitrageurs[arbitrageur] > 0:
print("arber", "https://etherscan.io/address/" + arbitrageur, arbitrageurs[arbitrageur])
open("data/slots_new.csv", "w").write("\n".join([",".join([str(x/(10**9)) for x in [ np.percentile(slotprices[slot], 10), np.percentile(slotprices[slot], 50), np.percentile(slotprices[slot], 75), np.percentile(slotprices[slot], 90), np.percentile(slotprices[slot], 99)]]) for slot in range(0, 10)]))
for slot in slotprices:
prices = slotprices[slot]
print(slot, np.percentile(prices, 10), np.percentile(prices, 50), np.percentile(prices, 75), np.percentile(prices, 99))