-
Notifications
You must be signed in to change notification settings - Fork 0
/
Maximum Sum Circular Subarray.cpp
100 lines (79 loc) · 3.05 KB
/
Maximum Sum Circular Subarray.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
/*
Maximum Sum Circular Subarray
Solution
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
Hide Hint #1
For those of you who are familiar with the Kadane's algorithm, think in terms of that. For the newbies, Kadane's algorithm is used to finding the maximum sum subarray from a given array. This problem is a twist on that idea and it is advisable to read up on that algorithm first before starting this problem. Unless you already have a great algorithm brewing up in your mind in which case, go right ahead!
Hide Hint #2
What is an alternate way of representing a circular array so that it appears to be a straight array? Essentially, there are two cases of this problem that we need to take care of. Let's look at the figure below to understand those two cases:
Hide Hint #3
The first case can be handled by the good old Kadane's algorithm. However, is there a smarter way of going about handling the second case as well?
*/
class Solution {
public:
int maxSubArray(std::vector<int>& A)
{
int currentSum = 0;
int maxSum = A[0];// INT_MIN;
for (auto v : A)
{
currentSum = std::max(v, currentSum+v);
maxSum = std::max(maxSum, currentSum);
}
return maxSum;
}
int minSubArray(std::vector<int>& A, int i , int j )
{
int currentSum = 0;
int minSum = 0;// A[0];// INT_MAX;
for (int k = i; k < j; k++)
{
currentSum = std::min(A[k], currentSum + A[k]);
minSum = std::min(minSum, currentSum);
}
return minSum;
}
int maxSubarraySumCircular(std::vector<int>& A)
{
// Sum
int S = 0;
for (auto v : A) S += v;
// Max sub array, not split
int max_nosplit = maxSubArray(A);
// Max sub array, split1
int minSubArr_nosplit1 = minSubArray(A,0,A.size()-1);
int max_split1 = S - minSubArr_nosplit1;
// Max sub array, split2
int minSubArr_nosplit2 = minSubArray(A, 1, A.size());
int max_split2 = S - minSubArr_nosplit2;
//auto old_count = A.size();
//A.reserve(2 * old_count);
//std::copy_n(A.begin(), old_count, std::back_inserter(A));
return std::max(max_nosplit,std::max(max_split1,max_split2));
}
};