-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDualTrain.py
197 lines (158 loc) · 7.9 KB
/
DualTrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
import os
from tqdm import tqdm
import matplotlib.pyplot as plt
from DualConvMixer import HourglassModel
from torchvision.models import vgg16
from torchvision.transforms.functional import to_pil_image
from torch.optim.lr_scheduler import OneCycleLR
from network.AutoEncoder import AutoEncoder
import numpy as np
import torch.nn.functional as F
from torchvision.models import vgg16
from loss.perceptual_similarity.perceptual_loss import PerceptualLoss
import kornia
import torch.nn.functional as F
from kornia.losses import ssim_loss
import numpy as np
import random
# 设置随机种子
seed = 42
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # if you are using multi-GPU.
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# 设置设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 创建保存结果的文件夹
os.makedirs("results", exist_ok=True)
os.makedirs("checkpoints", exist_ok=True)
ImageSize=96*2
batch_size = 64
# 数据预处理
train_transform = transforms.Compose([
# transforms.RandomCrop(64),
transforms.Resize((ImageSize, ImageSize)),
transforms.ToTensor(),
transforms.Lambda(lambda x: kornia.color.rgb_to_lab(x.unsqueeze(0)).squeeze(0))
])
eval_transform = transforms.Compose([
transforms.Resize((ImageSize, ImageSize)),
transforms.ToTensor(),
transforms.Lambda(lambda x: kornia.color.rgb_to_lab(x.unsqueeze(0)).squeeze(0))
])
# 加载STL10数据集
train_dataset = datasets.STL10(root='./STL10Data', split='train+unlabeled', download=True, transform=train_transform)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=8)
# 创建一个小的评估数据集
eval_dataset = datasets.STL10(root='./STL10Data', split='train', download=True, transform=eval_transform)
eval_loader = DataLoader(eval_dataset, batch_size=5, shuffle=True, num_workers=2)
# 加载CIFAR-10数据集
# train_dataset = datasets.CIFAR10(root='./CIFAR10RawData', train=True, download=True, transform=transform)
# train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True, num_workers=2)
# 初始化模型
# model = HourglassModel().to(device)
model = AutoEncoder(image_dims=(3, ImageSize, ImageSize), batch_size=batch_size,
C=16,activation='leaky_relu').to(device)
perceptual_loss = PerceptualLoss(model='net-lin', net='alex',
colorspace='Lab', use_gpu=torch.cuda.is_available()).to(device)
# 优化器
optimizer = optim.AdamW(model.parameters(), lr=0.0001)
def lab_loss(output, target):
# 计算 Delta E 2000 颜色差异
# Separate channel losses
l_loss = F.mse_loss(output[:, 0], target[:, 0]) / (100.0 **2) # Normalize by square of range
a_loss = F.mse_loss(output[:, 1], target[:, 1]) / (255.0 **2) # Normalize by square of range
b_loss = F.mse_loss(output[:, 2], target[:, 2]) / (255.0 **2) # Normalize by square of range
# SSIM loss (applied on L channel only)
ssim = ssim_loss(output[:, 0].unsqueeze(1), target[:, 0].unsqueeze(1), window_size=11)
# Separate TV loss for each channel
tv_loss_l = (torch.mean(torch.abs(output[:, 0, :, :-1] - output[:, 0, :, 1:])) +
torch.mean(torch.abs(output[:, 0, :-1, :] - output[:, 0, 1:, :]))) / 100.0 # L range is 0-100
tv_loss_a = (torch.mean(torch.abs(output[:, 1, :, :-1] - output[:, 1, :, 1:])) +
torch.mean(torch.abs(output[:, 1, :-1, :] - output[:, 1, 1:, :]))) / 255.0 # a range is -128 to 127
tv_loss_b = (torch.mean(torch.abs(output[:, 2, :, :-1] - output[:, 2, :, 1:])) +
torch.mean(torch.abs(output[:, 2, :-1, :] - output[:, 2, 1:, :]))) / 255.0 # b range is -128 to 127
tv_loss = tv_loss_l + 0.5 * (tv_loss_a + tv_loss_b) # Weighting channels differently
# Separate high frequency loss for each channel
high_freq_output_l = output[:, 0] - F.avg_pool2d(output[:, 0].unsqueeze(1), kernel_size=3, stride=1, padding=1).squeeze(1)
high_freq_target_l = target[:, 0] - F.avg_pool2d(target[:, 0].unsqueeze(1), kernel_size=3, stride=1, padding=1).squeeze(1)
high_freq_loss_l = F.mse_loss(high_freq_output_l, high_freq_target_l) / (100.0**2)
high_freq_output_ab = output[:, 1:] - F.avg_pool2d(output[:, 1:], kernel_size=3, stride=1, padding=1)
high_freq_target_ab = target[:, 1:] - F.avg_pool2d(target[:, 1:], kernel_size=3, stride=1, padding=1)
high_freq_loss_ab = F.mse_loss(high_freq_output_ab, high_freq_target_ab) / (255.0**2)
high_freq_loss = high_freq_loss_l + 0.5 * high_freq_loss_ab # Weighting channels differently
# 更新总损失计算
total_loss = 0.2 * (l_loss + 0.5 * (a_loss + b_loss)) + 0.1 * ssim + 0.01 * tv_loss + 0.1 * high_freq_loss
return total_loss, l_loss, a_loss, b_loss, ssim, tv_loss, high_freq_loss
def train(epoch):
model.train()
total_loss = 0
total_compressed_size = 0
for batch_idx, (data, _) in enumerate(tqdm(train_loader)):
data = data.to(device)
optimizer.zero_grad()
output, compressed = model(data)
# Calculate losses
loss_perceptual = perceptual_loss(output, data).mean()
loss_lab, l_loss, a_loss, b_loss, ssim, tv_loss, high_freq_loss = lab_loss(output, data)
loss = 0.3 * loss_perceptual + 0.7 * loss_lab
loss.backward()
optimizer.step()
total_loss += loss.item()
# Calculate compressed size
compressed_size = sum(len(s) for s in compressed)
total_compressed_size += compressed_size
print(f'Epoch {epoch}, Batch {batch_idx}, Backward Loss: {loss.item():.4f}, '
f'L: {l_loss.item():.4f}, '
f'a: {a_loss.item():.4f}, b: {b_loss.item():.4f}, '
f'SSIM: {ssim.item():.4f}, TV: {tv_loss.item():.4f}, HF: {high_freq_loss.item():.4f}')
print(f'pLoss: {loss_perceptual.item():.4f}',
f'lr: {optimizer.param_groups[0]["lr"]:.8f}')
avg_loss = total_loss / len(train_loader)
avg_compressed_size = total_compressed_size / len(train_dataset)
print(f'Epoch {epoch}, Average Loss: {avg_loss:.4f}')
print(f'total_compressed_size: {total_compressed_size}')
print(f'Average Compressed Size: {avg_compressed_size:.2f} bytes per image')
return avg_loss, avg_compressed_size
# 保存图像对比
def save_image_comparison(epoch, data, output):
fig, axes = plt.subplots(2, 5, figsize=(15, 6))
for i in range(5):
# 在保存图像对比函数中
axes[0, i].imshow(to_pil_image(kornia.color.lab_to_rgb(data[i].unsqueeze(0)).squeeze(0).cpu()))
axes[0, i].axis('off')
axes[0, i].set_title('Original')
axes[1, i].imshow(to_pil_image(kornia.color.lab_to_rgb(output[i].unsqueeze(0)).squeeze(0).cpu().clamp(0, 1)))
# axes[1, i].imshow(to_pil_image(output[i].cpu().clamp(-1, 1)))
axes[1, i].axis('off')
axes[1, i].set_title('Reconstructed')
plt.tight_layout()
plt.savefig(f'results/两倍原96*96LAB_HYPER_stl10_epoch_{epoch}.png')
plt.close()
# 训练循环
num_epochs = 50
# 修改训练循环
for epoch in range(1, num_epochs + 1):
model.update()
avg_loss, avg_compressed_size = train(epoch)
print(f'Epoch {epoch}, Average Loss: {avg_loss:.4f}, Average Compressed Size: {avg_compressed_size:.2f} bytes')
# 保存模型检查点
if epoch % 5 == 0:
torch.save(model.state_dict(), f'model_checkpoint{epoch}.pth')
# 生成并保存图像对比
if epoch % 1 == 0:
model.eval()
with torch.no_grad():
data = next(iter(eval_loader))[0].to(device)
output, compressed = model(data)
save_image_comparison(epoch, data, output)
print("Training completed!")