-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPaper_trainForMultiDDP.py
167 lines (133 loc) · 6.68 KB
/
Paper_trainForMultiDDP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import torch
from Paper_global_vars import global_vars
from torch import optim
import torch.nn.functional as F
import os
import gc
from torch.cuda.amp import autocast, GradScaler
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from Paper_Tree import *
from Paper_DataSetCIFAR import create_train_loader, create_valid_loader
torch.set_float32_matmul_precision('high')
if __name__ == "__main__":
dist.init_process_group(backend='nccl')
loader_train = create_train_loader(global_vars.dataset, distributed=True)
valid_data = create_valid_loader(global_vars.dataset, distributed=True)
# Set the device
local_rank = int(os.environ["LOCAL_RANK"])
device = torch.device(f"cuda:{local_rank}")
torch.cuda.set_device(device)
# Initialize model
model = globals()[global_vars.model_name]().to(device)
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
model = model.to(device)
model = DDP(model, device_ids=[local_rank], output_device=local_rank)
optimizer = getattr(optim, global_vars.optimizer)(model.parameters(), weight_decay=0.001)
scheduler = optim.lr_scheduler.OneCycleLR(
optimizer=optimizer,
max_lr=global_vars.max_lr,
total_steps=global_vars.num_epochs,
pct_start=0.3,
anneal_strategy='cos',
cycle_momentum=True,
base_momentum=0.85,
max_momentum=0.95,
)
best_models = []
best_accuracies = []
scaler = GradScaler()
for epoch in range(global_vars.num_epochs):
# Training phase
model.train()
batch_losses = []
train_correct = 0
train_total = 0
for batch_idx, (data, target) in enumerate(loader_train):
data, target = data.to(device), target.to(device)
with autocast():
outputs = model(data)
is_tree = hasattr(model.module, 'isTree') if isinstance(model, DDP) else model.isTree
if is_tree:
normalized_probs = outputs / outputs.sum(dim=1, keepdim=True)
batch_loss = torch.sum(-target * torch.log(normalized_probs + 1e-7), dim=-1).mean()
else:
batch_loss = torch.sum(-target * F.log_softmax(outputs, dim=-1), dim=-1).mean()
predicted_labels = outputs.argmax(dim=1)
train_correct += (predicted_labels == target.argmax(dim=1)).sum().item()
train_total += len(target)
scaler.scale(batch_loss).backward()
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
if dist.get_rank() == 0:
batch_losses.append(batch_loss.item())
if (batch_idx + 1) % 10 == 0:
avg_loss = sum(batch_losses[-10:]) / len(batch_losses[-10:])
print(f"Batches {batch_idx-8}-{batch_idx+1}/{len(loader_train)}: Avg Loss: {avg_loss:.4f}")
print(f"Learning rate: {scheduler.get_last_lr()[0]:.9f}")
batch_losses = []
scheduler.step()
train_accuracy = train_correct / train_total if train_total > 0 else 0
print(f"Epoch {epoch+1}/{global_vars.num_epochs} - Train Accuracy: {train_accuracy:.4f}({train_correct}/{train_total})")
# Validation phase
model.eval()
total_correct = torch.zeros(1).to(device)
total_samples = torch.zeros(1).to(device)
with torch.no_grad():
for data, target in valid_data:
data, target = data.to(device), target.to(device)
outputs = model(data)
predicted_labels = outputs.argmax(dim=1)
total_correct += (predicted_labels == target).sum()
total_samples += len(target)
dist.all_reduce(total_correct)
dist.all_reduce(total_samples)
if dist.get_rank() == 0:
accuracy = total_correct.item() / total_samples.item()
print(f"Test Accuracy: {accuracy:.4f}({total_correct.item()}/{total_samples.item()})")
# 保存前十个最佳模型
if len(best_models) < 10 or accuracy > min(best_accuracies):
# 保存模型和优化器
checkpoint = {
'model_state': model.state_dict(),
'optimizer_state': optimizer.state_dict(),
'accuracy': accuracy,
'epoch': epoch + 1
}
if len(best_models) == 10:
# 移除准确率最低的模型
min_acc_index = best_accuracies.index(min(best_accuracies))
min_acc = best_accuracies[min_acc_index]
# 删除文件系统中的模型文件
for filename in os.listdir(global_vars.save_path):
if filename.startswith("checkpoint_") and filename.endswith(f"acc_{min_acc:.4f}.pth"):
os.remove(os.path.join(global_vars.save_path, filename))
print(f"Removed file: {filename}")
best_models.pop(min_acc_index)
best_accuracies.pop(min_acc_index)
best_models.append(checkpoint)
best_accuracies.append(accuracy)
# 按准确率降序排序
best_models, best_accuracies = zip(*sorted(zip(best_models, best_accuracies),
key=lambda x: x[1], reverse=True))
best_models = list(best_models)
best_accuracies = list(best_accuracies)
# 保存模型和优化器
save_path_checkpoint = os.path.join(global_vars.save_path, f"checkpoint_epoch_{epoch+1}_acc_{accuracy:.4f}.pth")
os.makedirs(global_vars.save_path, exist_ok=True)
torch.save(checkpoint, save_path_checkpoint)
print(f"Saved checkpoint to {save_path_checkpoint}")
# 训练结束后,打印最佳模型信息
print("\nTop 10 Best Models:")
for i, checkpoint in enumerate(best_models, 1):
print(f"{i}. Epoch: {checkpoint['epoch']}, Accuracy: {checkpoint['accuracy']:.4f}")
gc.collect()
torch.cuda.empty_cache()
print(f"Rank {dist.get_rank()} reached the barrier.")
dist.barrier()
print(f"Rank {dist.get_rank()} passed the barrier.")
# 清理
dist.destroy_process_group()