forked from tensorflow/tfjs-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.js
221 lines (192 loc) · 7.59 KB
/
index.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import * as tf from '@tensorflow/tfjs';
import * as tfvis from '@tensorflow/tfjs-vis';
import * as data from './data';
import * as loader from './loader';
import * as ui from './ui';
let model;
const BATCH_SIZE = 32;
/**
* Train a `tf.Model` to recognize Iris flower type.
*
* @param trainDataset A tf.Dataset object yielding features and targets. The
* features must be of shape [numTrainExamples, 4], while the targets must be
* [numTrainExamples, 3]. The four feature dimensions include the
* petal_length, petal_width, sepal_length and sepal_width. The target is
* one-hot encoded labels of the three iris categories.
* @param validataionDataset A tf.Dataset of the same format as the trainDataset
* for use in validation.
* @returns The trained `tf.Model` instance.
*/
async function trainModel(trainDataset, validationDataset) {
ui.status('Training model... Please wait.');
const params = ui.loadTrainParametersFromUI();
// Define the topology of the model: two dense layers.
const model = tf.sequential();
model.add(tf.layers.dense({
units: 10,
activation: 'sigmoid',
inputShape: [data.IRIS_NUM_FEATURES]
}));
model.add(tf.layers.dense({units: 3, activation: 'softmax'}));
model.summary();
const optimizer = tf.train.adam(params.learningRate);
model.compile({
optimizer: optimizer,
loss: 'categoricalCrossentropy',
metrics: ['accuracy'],
});
const trainLogs = [];
const lossContainer = document.getElementById('lossCanvas');
const accContainer = document.getElementById('accuracyCanvas');
const beginMs = performance.now();
// Call `model.fit` to train the model.
await model.fitDataset(trainDataset, {
epochs: params.epochs,
validationData: validationDataset,
callbacks: {
onEpochEnd: async (epoch, logs) => {
// Plot the loss and accuracy values at the end of every training epoch.
const secPerEpoch =
(performance.now() - beginMs) / (1000 * (epoch + 1));
ui.status(
`Training model... Approximately ` +
`${secPerEpoch.toFixed(4)} seconds per epoch`);
trainLogs.push(logs);
tfvis.show.history(lossContainer, trainLogs, ['loss', 'val_loss'])
tfvis.show.history(accContainer, trainLogs, ['acc', 'val_acc'])
const [{xs: xTest, ys: yTest}] = await validationDataset.toArray();
calculateAndDrawConfusionMatrix(model, xTest, yTest);
},
}
});
const secPerEpoch = (performance.now() - beginMs) / (1000 * params.epochs);
ui.status(
`Model training complete: ${secPerEpoch.toFixed(4)} seconds per epoch`);
return model;
}
/**
* Run inference on manually-input Iris flower data.
*
* @param model The instance of `tf.Model` to run the inference with.
*/
async function predictOnManualInput(model) {
if (model == null) {
ui.setManualInputWinnerMessage('ERROR: Please load or train model first.');
return;
}
// Use a `tf.tidy` scope to make sure that WebGL memory allocated for the
// `predict` call is released at the end.
tf.tidy(() => {
// Prepare input data as a 2D `tf.Tensor`.
const inputData = ui.getManualInputData();
const input = tf.tensor2d([inputData], [1, 4]);
// Call `model.predict` to get the prediction output as probabilities for
// the Iris flower categories.
const predictOut = model.predict(input);
const logits = Array.from(predictOut.dataSync());
const winner = data.IRIS_CLASSES[predictOut.argMax(-1).dataSync()[0]];
ui.setManualInputWinnerMessage(winner);
ui.renderLogitsForManualInput(logits);
});
}
/**
* Draw confusion matrix.
*/
async function calculateAndDrawConfusionMatrix(model, xTest, yTest) {
const [preds, labels] = tf.tidy(() => {
const preds = model.predict(xTest).argMax(-1);
const labels = yTest.argMax(-1);
return [preds, labels];
});
const confMatrixData = await tfvis.metrics.confusionMatrix(labels, preds);
const container = document.getElementById('confusion-matrix');
tfvis.render.confusionMatrix(
container, {values: confMatrixData, labels: data.IRIS_CLASSES},
{shadeDiagonal: true},
);
tf.dispose([preds, labels]);
}
/**
* Run inference on some test Iris flower data.
*
* @param model The instance of `tf.Model` to run the inference with.
* @param testDataset A tf.Dataset object yielding features and targets. The
* features must be of shape [numTrainExamples, 4], while the targets must be
* [numTrainExamples, 3]. The four feature dimensions include the
* petal_length, petal_width, sepal_length and sepal_width. The target is
* one-hot encoded labels of the three iris categories.
*/
async function evaluateModelOnTestData(model, testDataset) {
ui.clearEvaluateTable();
const [[xTest, yTest]] = await testDataset.toArray();
const xData = xTest.dataSync();
const yTrue = yTest.argMax(-1).dataSync();
const predictOut = model.predict(xTest);
const yPred = predictOut.argMax(-1);
ui.renderEvaluateTable(xData, yTrue, yPred.dataSync(), predictOut.dataSync());
calculateAndDrawConfusionMatrix(model, xTest, yTest);
predictOnManualInput(model);
}
const HOSTED_MODEL_JSON_URL =
'https://storage.googleapis.com/tfjs-models/tfjs/iris_v1/model.json';
/**
* The main function of the Iris demo.
*/
async function iris() {
const testFraction = 0.15;
let [trainDataset, testDataset] = await data.getIrisData(testFraction);
// Batch datasets.
trainDataset = trainDataset.batch(BATCH_SIZE);
testDataset = testDataset.batch(BATCH_SIZE);
const localLoadButton = document.getElementById('load-local');
const localSaveButton = document.getElementById('save-local');
const localRemoveButton = document.getElementById('remove-local');
document.getElementById('train-from-scratch')
.addEventListener('click', async () => {
model = await trainModel(trainDataset, testDataset);
await evaluateModelOnTestData(model, testDataset);
localSaveButton.disabled = false;
});
if (await loader.urlExists(HOSTED_MODEL_JSON_URL)) {
ui.status('Model available: ' + HOSTED_MODEL_JSON_URL);
const button = document.getElementById('load-pretrained-remote');
button.addEventListener('click', async () => {
ui.clearEvaluateTable();
model = await loader.loadHostedPretrainedModel(HOSTED_MODEL_JSON_URL);
await predictOnManualInput(model);
localSaveButton.disabled = false;
});
}
localLoadButton.addEventListener('click', async () => {
model = await loader.loadModelLocally();
await predictOnManualInput(model);
});
localSaveButton.addEventListener('click', async () => {
await loader.saveModelLocally(model);
await loader.updateLocalModelStatus();
});
localRemoveButton.addEventListener('click', async () => {
await loader.removeModelLocally();
await loader.updateLocalModelStatus();
});
await loader.updateLocalModelStatus();
ui.status('Standing by.');
ui.wireUpEvaluateTableCallbacks(() => predictOnManualInput(model));
}
iris();