forked from tensorflow/tfjs-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain-rnn.js
157 lines (146 loc) · 5.14 KB
/
train-rnn.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* Train recurrent neural networks (RNNs) for temperature prediction.
*
* This script drives the RNN training process in the Node.js environment
* using tfjs-node or tfjs-node-gpu (see the `--gpu` flag).
*
* - See [data.js](./data.js) for how the Jena weather dataset is loaded.
* - See [models.js](./train.js) for the detailed model creation and training
* logic.
*/
import {ArgumentParser} from 'argparse';
import {JenaWeatherData} from './data';
import {buildModel, getBaselineMeanAbsoluteError, trainModel} from './models';
global.fetch = require('node-fetch');
function parseArguments() {
const parser =
new ArgumentParser({description: 'Train RNNs for Jena weather problem'});
parser.addArgument('--modelType', {
type: 'string',
defaultValue: 'gru',
optionStrings: ['baseline', 'gru', 'simpleRNN'],
// TODO(cais): Add more model types, e.g., gru with recurrent dropout.
help: 'Type of the model to train. Use "baseline" to compute the ' +
'commonsense baseline prediction error.'
});
parser.addArgument('--gpu', {
action: 'storeTrue',
help: 'Use GPU'
});
parser.addArgument('--lookBack', {
type: 'int',
defaultValue: 10 * 24 * 6,
help: 'Look-back period (# of rows) for generating features'
});
parser.addArgument('--step', {
type: 'int',
defaultValue: 6,
help: 'Step size (# of rows) used for generating features'
});
parser.addArgument('--delay', {
type: 'int',
defaultValue: 24 * 6,
help: 'How many steps (# of rows) in the future to predict the ' +
'temperature for'
});
parser.addArgument('--normalize', {
defaultValue: true,
help: 'Used normalized feature values (default: true)'
});
parser.addArgument('--includeDateTime', {
action: 'storeTrue',
help: 'Used date and time features (default: false)'
});
parser.addArgument(
'--batchSize',
{type: 'int', defaultValue: 128, help: 'Batch size for training'});
parser.addArgument(
'--epochs',
{type: 'int', defaultValue: 20, help: 'Number of training epochs'});
parser.addArgument( '--earlyStoppingPatience', {
type: 'int',
defaultValue: 2,
help: 'Optional patience number for EarlyStoppingCallback'
});
parser.addArgument('--logDir', {
type: 'string',
help: 'Optional tensorboard log directory, to which the loss and ' +
'accuracy will be logged during model training.'
});
parser.addArgument('--logUpdateFreq', {
type: 'string',
defaultValue: 'batch',
optionStrings: ['batch', 'epoch'],
help: 'Frequency at which the loss and accuracy will be logged to ' +
'tensorboard.'
});
return parser.parseArgs();
}
async function main() {
const args = parseArguments();
let tfn;
if (args.gpu) {
console.log('Using GPU for training.');
tfn = require('@tensorflow/tfjs-node-gpu');
} else {
console.log('Using CPU for training.');
tfn = require('@tensorflow/tfjs-node');
}
const jenaWeatherData = new JenaWeatherData();
console.log(`Loading Jena weather data...`);
await jenaWeatherData.load();
if (args.modelType === 'baseline') {
console.log('Calculating commonsense baseline mean absolute error...');
const baselineError = await getBaselineMeanAbsoluteError(
jenaWeatherData, args.normalize, args.includeDateTime, args.lookBack,
args.step, args.delay);
console.log(
`Commonsense baseline mean absolute error: ` +
`${baselineError.toFixed(6)}`);
} else {
let numFeatures = jenaWeatherData.getDataColumnNames().length;
const model = buildModel(
args.modelType, Math.floor(args.lookBack / args.step), numFeatures);
let callback = [];
if (args.logDir != null) {
console.log(
`Logging to tensorboard. ` +
`Use the command below to bring up tensorboard server:\n` +
` tensorboard --logdir ${args.logDir}`);
callback.push(tfn.node.tensorBoard(args.logDir, {
updateFreq: args.logUpdateFreq
}));
}
if (args.earlyStoppingPatience != null) {
console.log(
`Using earlyStoppingCallback with patience ` +
`${args.earlyStoppingPatience}.`);
callback.push(tfn.callbacks.earlyStopping({
patience: args.earlyStoppingPatience
}));
}
await trainModel(
model, jenaWeatherData, args.normalize, args.includeDateTime,
args.lookBack, args.step, args.delay, args.batchSize, args.epochs,
callback);
}
}
if (require.main === module) {
main();
}