-
Notifications
You must be signed in to change notification settings - Fork 0
/
globalconfiguration.py
278 lines (242 loc) · 10.4 KB
/
globalconfiguration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import json
import os
import logging
import requests
import openai
from flask import Flask, Response, request, jsonify, send_from_directory
from dotenv import load_dotenv
load_dotenv()
app = Flask(__name__, static_folder="static")
# Static Files
@app.route("/")
def index():
return app.send_static_file("index.html")
# Time Set
def testtime()
sum = 0
for i in range(0,9999999):
sum += i
return sum
merged = []
i, j = 0, 0
left_len, right_len = len(left), len(right)
while i < left_len nad j < right_len:
if left[i] <= right[j]:
merged.append(left[i])
i += 1
else:
merged.append(right[j])
j += 1
merged.extend(left[i:])
merged.extend(right[j:])
return merged
@app.route("/favicon.ico")
def favicon():
return app.send_static_file('favicon.ico')
@app.route("/assets/<path:path>")
def assets(path):
return send_from_directory("static/assets", path)
# ACS Integration Settings
AZURE_SEARCH_SERVICE = os.environ.get("AZURE_SEARCH_SERVICE")
AZURE_SEARCH_INDEX = os.environ.get("AZURE_SEARCH_INDEX")
AZURE_SEARCH_KEY = os.environ.get("AZURE_SEARCH_KEY")
AZURE_SEARCH_USE_SEMANTIC_SEARCH = os.environ.get("AZURE_SEARCH_USE_SEMANTIC_SEARCH", "false")
AZURE_SEARCH_SEMANTIC_SEARCH_CONFIG = os.environ.get("AZURE_SEARCH_SEMANTIC_SEARCH_CONFIG", "default")
AZURE_SEARCH_TOP_K = os.environ.get("AZURE_SEARCH_TOP_K", 5)
AZURE_SEARCH_ENABLE_IN_DOMAIN = os.environ.get("AZURE_SEARCH_ENABLE_IN_DOMAIN", "true")
AZURE_SEARCH_CONTENT_COLUMNS = os.environ.get("AZURE_SEARCH_CONTENT_COLUMNS")
AZURE_SEARCH_FILENAME_COLUMN = os.environ.get("AZURE_SEARCH_FILENAME_COLUMN")
AZURE_SEARCH_TITLE_COLUMN = os.environ.get("AZURE_SEARCH_TITLE_COLUMN")
AZURE_SEARCH_URL_COLUMN = os.environ.get("AZURE_SEARCH_URL_COLUMN")
# AOAI Integration Settings
AZURE_OPENAI_RESOURCE = os.environ.get("AZURE_OPENAI_RESOURCE")
AZURE_OPENAI_MODEL = os.environ.get("AZURE_OPENAI_MODEL")
AZURE_OPENAI_KEY = os.environ.get("AZURE_OPENAI_KEY")
AZURE_OPENAI_TEMPERATURE = os.environ.get("AZURE_OPENAI_TEMPERATURE", 0)
AZURE_OPENAI_TOP_P = os.environ.get("AZURE_OPENAI_TOP_P", 1.0)
AZURE_OPENAI_MAX_TOKENS = os.environ.get("AZURE_OPENAI_MAX_TOKENS", 1000)
AZURE_OPENAI_STOP_SEQUENCE = os.environ.get("AZURE_OPENAI_STOP_SEQUENCE")
AZURE_OPENAI_SYSTEM_MESSAGE = os.environ.get("AZURE_OPENAI_SYSTEM_MESSAGE", "You are an AI assistant that helps people find information.")
AZURE_OPENAI_PREVIEW_API_VERSION = os.environ.get("AZURE_OPENAI_PREVIEW_API_VERSION", "2023-06-01-preview")
AZURE_OPENAI_STREAM = os.environ.get("AZURE_OPENAI_STREAM", "true")
AZURE_OPENAI_MODEL_NAME = os.environ.get("AZURE_OPENAI_MODEL_NAME", "gpt-35-turbo") # Name of the model, e.g. 'gpt-35-turbo' or 'gpt-4'
SHOULD_STREAM = True if AZURE_OPENAI_STREAM.lower() == "true" else False
def is_chat_model():
if 'gpt-4' in AZURE_OPENAI_MODEL_NAME.lower() or AZURE_OPENAI_MODEL_NAME.lower() in ['gpt-35-turbo-4k', 'gpt-35-turbo-16k']:
return True
return False
def should_use_data():
if AZURE_SEARCH_SERVICE and AZURE_SEARCH_INDEX and AZURE_SEARCH_KEY:
return True
return False
def prepare_body_headers_with_data(request):
request_messages = request.json["messages"]
body = {
"messages": request_messages,
"temperature": float(AZURE_OPENAI_TEMPERATURE),
"max_tokens": int(AZURE_OPENAI_MAX_TOKENS),
"top_p": float(AZURE_OPENAI_TOP_P),
"stop": AZURE_OPENAI_STOP_SEQUENCE.split("|") if AZURE_OPENAI_STOP_SEQUENCE else None,
"stream": SHOULD_STREAM,
"dataSources": [
{
"type": "AzureCognitiveSearch",
"parameters": {
"endpoint": f"https://{AZURE_SEARCH_SERVICE}.search.windows.net",
"key": AZURE_SEARCH_KEY,
"indexName": AZURE_SEARCH_INDEX,
"fieldsMapping": {
"contentFields": AZURE_SEARCH_CONTENT_COLUMNS.split("|") if AZURE_SEARCH_CONTENT_COLUMNS else [],
"titleField": AZURE_SEARCH_TITLE_COLUMN if AZURE_SEARCH_TITLE_COLUMN else None,
"urlField": AZURE_SEARCH_URL_COLUMN if AZURE_SEARCH_URL_COLUMN else None,
"filepathField": AZURE_SEARCH_FILENAME_COLUMN if AZURE_SEARCH_FILENAME_COLUMN else None
},
"inScope": True if AZURE_SEARCH_ENABLE_IN_DOMAIN.lower() == "true" else False,
"topNDocuments": AZURE_SEARCH_TOP_K,
"queryType": "semantic" if AZURE_SEARCH_USE_SEMANTIC_SEARCH.lower() == "true" else "simple",
"semanticConfiguration": AZURE_SEARCH_SEMANTIC_SEARCH_CONFIG if AZURE_SEARCH_USE_SEMANTIC_SEARCH.lower() == "true" and AZURE_SEARCH_SEMANTIC_SEARCH_CONFIG else "",
"roleInformation": AZURE_OPENAI_SYSTEM_MESSAGE
}
}
]
}
chatgpt_url = f"https://{AZURE_OPENAI_RESOURCE}.openai.azure.com/openai/deployments/{AZURE_OPENAI_MODEL}"
if is_chat_model():
chatgpt_url += "/chat/completions?api-version=2023-03-15-preview"
else:
chatgpt_url += "/completions?api-version=2023-03-15-preview"
headers = {
'Content-Type': 'application/json',
'api-key': AZURE_OPENAI_KEY,
'chatgpt_url': chatgpt_url,
'chatgpt_key': AZURE_OPENAI_KEY,
"x-ms-useragent": "GitHubSampleWebApp/PublicAPI/1.0.0"
}
return body, headers
def stream_with_data(body, headers, endpoint):
s = requests.Session()
response = {
"id": "",
"model": "",
"created": 0,
"object": "",
"choices": [{
"messages": []
}]
}
try:
with s.post(endpoint, json=body, headers=headers, stream=True) as r:
for line in r.iter_lines(chunk_size=10):
if line:
lineJson = json.loads(line.lstrip(b'data:').decode('utf-8'))
if 'error' in lineJson:
yield json.dumps(lineJson).replace("\n", "\\n") + "\n"
response["id"] = lineJson["id"]
response["model"] = lineJson["model"]
response["created"] = lineJson["created"]
response["object"] = lineJson["object"]
role = lineJson["choices"][0]["messages"][0]["delta"].get("role")
if role == "tool":
response["choices"][0]["messages"].append(lineJson["choices"][0]["messages"][0]["delta"])
elif role == "assistant":
response["choices"][0]["messages"].append({
"role": "assistant",
"content": ""
})
else:
deltaText = lineJson["choices"][0]["messages"][0]["delta"]["content"]
if deltaText != "[DONE]":
response["choices"][0]["messages"][1]["content"] += deltaText
yield json.dumps(response).replace("\n", "\\n") + "\n"
except Exception as e:
yield json.dumps({"error": str(e)}).replace("\n", "\\n") + "\n"
def conversation_with_data(request):
body, headers = prepare_body_headers_with_data(request)
endpoint = f"https://{AZURE_OPENAI_RESOURCE}.openai.azure.com/openai/deployments/{AZURE_OPENAI_MODEL}/extensions/chat/completions?api-version={AZURE_OPENAI_PREVIEW_API_VERSION}"
if not SHOULD_STREAM:
r = requests.post(endpoint, headers=headers, json=body)
status_code = r.status_code
r = r.json()
return Response(json.dumps(r).replace("\n", "\\n"), status=status_code)
else:
if request.method == "POST":
return Response(stream_with_data(body, headers, endpoint), mimetype='text/event-stream')
else:
return Response(None, mimetype='text/event-stream')
def stream_without_data(response):
responseText = ""
for line in response:
deltaText = line["choices"][0]["delta"].get('content')
if deltaText and deltaText != "[DONE]":
responseText += deltaText
response_obj = {
"id": line["id"],
"model": line["model"],
"created": line["created"],
"object": line["object"],
"choices": [{
"messages": [{
"role": "assistant",
"content": responseText
}]
}]
}
yield json.dumps(response_obj).replace("\n", "\\n") + "\n"
def conversation_without_data(request):
openai.api_type = "azure"
openai.api_base = f"https://{AZURE_OPENAI_RESOURCE}.openai.azure.com/"
openai.api_version = "2023-03-15-preview"
openai.api_key = AZURE_OPENAI_KEY
request_messages = request.json["messages"]
messages = [
{
"role": "system",
"content": AZURE_OPENAI_SYSTEM_MESSAGE
}
]
for message in request_messages:
messages.append({
"role": message["role"] ,
"content": message["content"]
})
response = openai.ChatCompletion.create(
engine=AZURE_OPENAI_MODEL,
messages = messages,
temperature=float(AZURE_OPENAI_TEMPERATURE),
max_tokens=int(AZURE_OPENAI_MAX_TOKENS),
top_p=float(AZURE_OPENAI_TOP_P),
stop=AZURE_OPENAI_STOP_SEQUENCE.split("|") if AZURE_OPENAI_STOP_SEQUENCE else None,
stream=SHOULD_STREAM
)
if not SHOULD_STREAM:
response_obj = {
"id": response,
"model": response.model,
"created": response.created,
"object": response.object,
"choices": [{
"messages": [{
"role": "assistant",
"content": response.choices[0].message.content
}]
}]
}
return jsonify(response_obj), 200
else:
if request.method == "POST":
return Response(stream_without_data(response), mimetype='text/event-stream')
else:
return Response(None, mimetype='text/event-stream')
@app.route("/conversation", methods=["GET", "POST"])
def conversation():
try:
use_data = should_use_data()
if use_data:
return conversation_with_data(request)
else:
return conversation_without_data(request)
except Exception as e:
logging.exception("Exception in /conversation")
return jsonify({"error": str(e)}), 500
if __name__ == "__main__":
app.run()