forked from jiupinjia/stylized-neural-painting
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpytorch_batch_sinkhorn.py
81 lines (61 loc) · 2.73 KB
/
pytorch_batch_sinkhorn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
#!/usr/bin/env python
"""
sinkhorn_pointcloud.py
Discrete OT : Sinkhorn algorithm for point cloud marginals.
"""
import torch
from torch.autograd import Variable
# Decide which device we want to run on
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def sinkhorn_normalized(x, y, epsilon, niter, mass_x=None, mass_y=None):
Wxy = sinkhorn_loss(x, y, epsilon, niter, mass_x, mass_y)
Wxx = sinkhorn_loss(x, x, epsilon, niter, mass_x, mass_x)
Wyy = sinkhorn_loss(y, y, epsilon, niter, mass_y, mass_y)
return 2 * Wxy - Wxx - Wyy
def sinkhorn_loss(x, y, epsilon, niter, mass_x=None, mass_y=None):
"""
Given two emprical measures with n points each with locations x and y
outputs an approximation of the OT cost with regularization parameter epsilon
niter is the max. number of steps in sinkhorn loop
"""
# The Sinkhorn algorithm takes as input three variables :
C = cost_matrix(x, y) # Wasserstein cost function
nx = x.shape[1]
ny = y.shape[1]
batch_size = x.shape[0]
if mass_x is None:
# assign marginal to fixed with equal weights
mu = 1. / nx * torch.ones([batch_size, nx]).to(device)
else: # normalize
mass_x.data = torch.clamp(mass_x.data, min=0, max=1e9)
mass_x = mass_x + 1e-9
mu = (mass_x / mass_x.sum(dim=-1, keepdim=True)).to(device)
if mass_y is None:
# assign marginal to fixed with equal weights
nu = 1. / ny * torch.ones([batch_size, ny]).to(device)
else: # normalize
mass_y.data = torch.clamp(mass_y.data, min=0, max=1e9)
mass_y = mass_y + 1e-9
nu = (mass_y / mass_y.sum(dim=-1, keepdim=True)).to(device)
def M(u, v):
"Modified cost for logarithmic updates"
"$M_{ij} = (-c_{ij} + u_i + v_j) / \epsilon$"
return (-C + u.unsqueeze(2) + v.unsqueeze(1)) / epsilon
def lse(A):
"log-sum-exp"
return torch.log(torch.exp(A).sum(2, keepdim=True) + 1e-6) # add 10^-6 to prevent NaN
# Actual Sinkhorn loop ......................................................................
u, v, err = 0. * mu, 0. * nu, 0.
for i in range(niter):
u = epsilon * (torch.log(mu) - lse(M(u, v)).squeeze()) + u
v = epsilon * (torch.log(nu) - lse(M(u, v).transpose(dim0=1, dim1=2)).squeeze()) + v
U, V = u, v
pi = torch.exp(M(U, V)) # Transport plan pi = diag(a)*K*diag(b)
cost = torch.sum(pi * C, dim=[1, 2]) # Sinkhorn cost
return torch.mean(cost)
def cost_matrix(x, y, p=2):
"Returns the matrix of $|x_i-y_j|^p$."
x_col = x.unsqueeze(2)
y_lin = y.unsqueeze(1)
c = torch.sum((torch.abs(x_col - y_lin)) ** p, -1)
return c