forked from hunkim/DeepLearningZeroToAll
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlab-11-5-mnist_cnn_ensemble_layers.py
151 lines (119 loc) · 5.49 KB
/
lab-11-5-mnist_cnn_ensemble_layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# Lab 11 MNIST and Deep learning CNN
# https://www.tensorflow.org/tutorials/layers
import tensorflow as tf
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data
tf.set_random_seed(777) # reproducibility
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
# Check out https://www.tensorflow.org/get_started/mnist/beginners for
# more information about the mnist dataset
# hyper parameters
learning_rate = 0.001
training_epochs = 20
batch_size = 100
class Model:
def __init__(self, sess, name):
self.sess = sess
self.name = name
self._build_net()
def _build_net(self):
with tf.variable_scope(self.name):
# dropout (keep_prob) rate 0.7~0.5 on training, but should be 1
# for testing
self.training = tf.placeholder(tf.bool)
# input place holders
self.X = tf.placeholder(tf.float32, [None, 784])
# img 28x28x1 (black/white), Input Layer
X_img = tf.reshape(self.X, [-1, 28, 28, 1])
self.Y = tf.placeholder(tf.float32, [None, 10])
# Convolutional Layer #1
conv1 = tf.layers.conv2d(inputs=X_img, filters=32, kernel_size=[3, 3],
padding="SAME", activation=tf.nn.relu)
# Pooling Layer #1
pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2],
padding="SAME", strides=2)
dropout1 = tf.layers.dropout(inputs=pool1,
rate=0.3, training=self.training)
# Convolutional Layer #2 and Pooling Layer #2
conv2 = tf.layers.conv2d(inputs=dropout1, filters=64, kernel_size=[3, 3],
padding="SAME", activation=tf.nn.relu)
pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2],
padding="SAME", strides=2)
dropout2 = tf.layers.dropout(inputs=pool2,
rate=0.3, training=self.training)
# Convolutional Layer #3 and Pooling Layer #3
conv3 = tf.layers.conv2d(inputs=dropout2, filters=128, kernel_size=[3, 3],
padding="SAME", activation=tf.nn.relu)
pool3 = tf.layers.max_pooling2d(inputs=conv3, pool_size=[2, 2],
padding="SAME", strides=2)
dropout3 = tf.layers.dropout(inputs=pool3,
rate=0.3, training=self.training)
# Dense Layer with Relu
flat = tf.reshape(dropout3, [-1, 128 * 4 * 4])
dense4 = tf.layers.dense(inputs=flat,
units=625, activation=tf.nn.relu)
dropout4 = tf.layers.dropout(inputs=dense4,
rate=0.5, training=self.training)
# Logits (no activation) Layer: L5 Final FC 625 inputs -> 10 outputs
self.logits = tf.layers.dense(inputs=dropout4, units=10)
# define cost/loss & optimizer
self.cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
logits=self.logits, labels=self.Y))
self.optimizer = tf.train.AdamOptimizer(
learning_rate=learning_rate).minimize(self.cost)
correct_prediction = tf.equal(
tf.argmax(self.logits, 1), tf.argmax(self.Y, 1))
self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
def predict(self, x_test, training=False):
return self.sess.run(self.logits,
feed_dict={self.X: x_test, self.training: training})
def get_accuracy(self, x_test, y_test, training=False):
return self.sess.run(self.accuracy,
feed_dict={self.X: x_test,
self.Y: y_test, self.training: training})
def train(self, x_data, y_data, training=True):
return self.sess.run([self.cost, self.optimizer], feed_dict={
self.X: x_data, self.Y: y_data, self.training: training})
# initialize
sess = tf.Session()
models = []
num_models = 2
for m in range(num_models):
models.append(Model(sess, "model" + str(m)))
sess.run(tf.global_variables_initializer())
print('Learning Started!')
# train my model
for epoch in range(training_epochs):
avg_cost_list = np.zeros(len(models))
total_batch = int(mnist.train.num_examples / batch_size)
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
# train each model
for m_idx, m in enumerate(models):
c, _ = m.train(batch_xs, batch_ys)
avg_cost_list[m_idx] += c / total_batch
print('Epoch:', '%04d' % (epoch + 1), 'cost =', avg_cost_list)
print('Learning Finished!')
# Test model and check accuracy
test_size = len(mnist.test.labels)
predictions = np.zeros([test_size, 10])
for m_idx, m in enumerate(models):
print(m_idx, 'Accuracy:', m.get_accuracy(
mnist.test.images, mnist.test.labels))
p = m.predict(mnist.test.images)
predictions += p
ensemble_correct_prediction = tf.equal(
tf.argmax(predictions, 1), tf.argmax(mnist.test.labels, 1))
ensemble_accuracy = tf.reduce_mean(
tf.cast(ensemble_correct_prediction, tf.float32))
print('Ensemble accuracy:', sess.run(ensemble_accuracy))
'''
0 Accuracy: 0.9933
1 Accuracy: 0.9946
2 Accuracy: 0.9934
3 Accuracy: 0.9935
4 Accuracy: 0.9935
5 Accuracy: 0.9949
6 Accuracy: 0.9941
Ensemble accuracy: 0.9952
'''