-
Notifications
You must be signed in to change notification settings - Fork 16
/
sha1.hpp
executable file
·255 lines (222 loc) · 8.4 KB
/
sha1.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
#include <cstdint>
#include <cstring>
#define SHA1_HEX_SIZE (40 + 1)
#define SHA1_BASE64_SIZE (28 + 1)
class sha1 {
private:
void add_byte_dont_count_bits(uint8_t x){
buf[i++] = x;
if (i >= sizeof(buf)){
i = 0;
process_block(buf);
}
}
static uint32_t rol32(uint32_t x, uint32_t n){
return (x << n) | (x >> (32 - n));
}
static uint32_t make_word(const uint8_t *p){
return
((uint32_t)p[0] << 3*8) |
((uint32_t)p[1] << 2*8) |
((uint32_t)p[2] << 1*8) |
((uint32_t)p[3] << 0*8);
}
void process_block(const uint8_t *ptr){
const uint32_t c0 = 0x5a827999;
const uint32_t c1 = 0x6ed9eba1;
const uint32_t c2 = 0x8f1bbcdc;
const uint32_t c3 = 0xca62c1d6;
uint32_t a = state[0];
uint32_t b = state[1];
uint32_t c = state[2];
uint32_t d = state[3];
uint32_t e = state[4];
uint32_t w[16];
for (int i = 0; i < 16; i++) w[i] = make_word(ptr + i*4);
#define SHA1_LOAD(i) w[i&15] = rol32(w[(i+13)&15] ^ w[(i+8)&15] ^ w[(i+2)&15] ^ w[i&15], 1);
#define SHA1_ROUND_0(v,u,x,y,z,i) z += ((u & (x ^ y)) ^ y) + w[i&15] + c0 + rol32(v, 5); u = rol32(u, 30);
#define SHA1_ROUND_1(v,u,x,y,z,i) SHA1_LOAD(i) z += ((u & (x ^ y)) ^ y) + w[i&15] + c0 + rol32(v, 5); u = rol32(u, 30);
#define SHA1_ROUND_2(v,u,x,y,z,i) SHA1_LOAD(i) z += (u ^ x ^ y) + w[i&15] + c1 + rol32(v, 5); u = rol32(u, 30);
#define SHA1_ROUND_3(v,u,x,y,z,i) SHA1_LOAD(i) z += (((u | x) & y) | (u & x)) + w[i&15] + c2 + rol32(v, 5); u = rol32(u, 30);
#define SHA1_ROUND_4(v,u,x,y,z,i) SHA1_LOAD(i) z += (u ^ x ^ y) + w[i&15] + c3 + rol32(v, 5); u = rol32(u, 30);
SHA1_ROUND_0(a, b, c, d, e, 0);
SHA1_ROUND_0(e, a, b, c, d, 1);
SHA1_ROUND_0(d, e, a, b, c, 2);
SHA1_ROUND_0(c, d, e, a, b, 3);
SHA1_ROUND_0(b, c, d, e, a, 4);
SHA1_ROUND_0(a, b, c, d, e, 5);
SHA1_ROUND_0(e, a, b, c, d, 6);
SHA1_ROUND_0(d, e, a, b, c, 7);
SHA1_ROUND_0(c, d, e, a, b, 8);
SHA1_ROUND_0(b, c, d, e, a, 9);
SHA1_ROUND_0(a, b, c, d, e, 10);
SHA1_ROUND_0(e, a, b, c, d, 11);
SHA1_ROUND_0(d, e, a, b, c, 12);
SHA1_ROUND_0(c, d, e, a, b, 13);
SHA1_ROUND_0(b, c, d, e, a, 14);
SHA1_ROUND_0(a, b, c, d, e, 15);
SHA1_ROUND_1(e, a, b, c, d, 16);
SHA1_ROUND_1(d, e, a, b, c, 17);
SHA1_ROUND_1(c, d, e, a, b, 18);
SHA1_ROUND_1(b, c, d, e, a, 19);
SHA1_ROUND_2(a, b, c, d, e, 20);
SHA1_ROUND_2(e, a, b, c, d, 21);
SHA1_ROUND_2(d, e, a, b, c, 22);
SHA1_ROUND_2(c, d, e, a, b, 23);
SHA1_ROUND_2(b, c, d, e, a, 24);
SHA1_ROUND_2(a, b, c, d, e, 25);
SHA1_ROUND_2(e, a, b, c, d, 26);
SHA1_ROUND_2(d, e, a, b, c, 27);
SHA1_ROUND_2(c, d, e, a, b, 28);
SHA1_ROUND_2(b, c, d, e, a, 29);
SHA1_ROUND_2(a, b, c, d, e, 30);
SHA1_ROUND_2(e, a, b, c, d, 31);
SHA1_ROUND_2(d, e, a, b, c, 32);
SHA1_ROUND_2(c, d, e, a, b, 33);
SHA1_ROUND_2(b, c, d, e, a, 34);
SHA1_ROUND_2(a, b, c, d, e, 35);
SHA1_ROUND_2(e, a, b, c, d, 36);
SHA1_ROUND_2(d, e, a, b, c, 37);
SHA1_ROUND_2(c, d, e, a, b, 38);
SHA1_ROUND_2(b, c, d, e, a, 39);
SHA1_ROUND_3(a, b, c, d, e, 40);
SHA1_ROUND_3(e, a, b, c, d, 41);
SHA1_ROUND_3(d, e, a, b, c, 42);
SHA1_ROUND_3(c, d, e, a, b, 43);
SHA1_ROUND_3(b, c, d, e, a, 44);
SHA1_ROUND_3(a, b, c, d, e, 45);
SHA1_ROUND_3(e, a, b, c, d, 46);
SHA1_ROUND_3(d, e, a, b, c, 47);
SHA1_ROUND_3(c, d, e, a, b, 48);
SHA1_ROUND_3(b, c, d, e, a, 49);
SHA1_ROUND_3(a, b, c, d, e, 50);
SHA1_ROUND_3(e, a, b, c, d, 51);
SHA1_ROUND_3(d, e, a, b, c, 52);
SHA1_ROUND_3(c, d, e, a, b, 53);
SHA1_ROUND_3(b, c, d, e, a, 54);
SHA1_ROUND_3(a, b, c, d, e, 55);
SHA1_ROUND_3(e, a, b, c, d, 56);
SHA1_ROUND_3(d, e, a, b, c, 57);
SHA1_ROUND_3(c, d, e, a, b, 58);
SHA1_ROUND_3(b, c, d, e, a, 59);
SHA1_ROUND_4(a, b, c, d, e, 60);
SHA1_ROUND_4(e, a, b, c, d, 61);
SHA1_ROUND_4(d, e, a, b, c, 62);
SHA1_ROUND_4(c, d, e, a, b, 63);
SHA1_ROUND_4(b, c, d, e, a, 64);
SHA1_ROUND_4(a, b, c, d, e, 65);
SHA1_ROUND_4(e, a, b, c, d, 66);
SHA1_ROUND_4(d, e, a, b, c, 67);
SHA1_ROUND_4(c, d, e, a, b, 68);
SHA1_ROUND_4(b, c, d, e, a, 69);
SHA1_ROUND_4(a, b, c, d, e, 70);
SHA1_ROUND_4(e, a, b, c, d, 71);
SHA1_ROUND_4(d, e, a, b, c, 72);
SHA1_ROUND_4(c, d, e, a, b, 73);
SHA1_ROUND_4(b, c, d, e, a, 74);
SHA1_ROUND_4(a, b, c, d, e, 75);
SHA1_ROUND_4(e, a, b, c, d, 76);
SHA1_ROUND_4(d, e, a, b, c, 77);
SHA1_ROUND_4(c, d, e, a, b, 78);
SHA1_ROUND_4(b, c, d, e, a, 79);
#undef SHA1_LOAD
#undef SHA1_ROUND_0
#undef SHA1_ROUND_1
#undef SHA1_ROUND_2
#undef SHA1_ROUND_3
#undef SHA1_ROUND_4
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
}
public:
uint32_t state[5];
uint8_t buf[64];
uint32_t i;
uint64_t n_bits;
sha1(const char *text = NULL): i(0), n_bits(0){
state[0] = 0x67452301;
state[1] = 0xEFCDAB89;
state[2] = 0x98BADCFE;
state[3] = 0x10325476;
state[4] = 0xC3D2E1F0;
if (text) add(text);
}
sha1& add(uint8_t x){
add_byte_dont_count_bits(x);
n_bits += 8;
return *this;
}
sha1& add(char c){
return add(*(uint8_t*)&c);
}
sha1& add(const void *data, uint32_t n){
if (!data) return *this;
const uint8_t *ptr = (const uint8_t*)data;
// fill up block if not full
for (; n && i % sizeof(buf); n--) add(*ptr++);
// process full blocks
for (; n >= sizeof(buf); n -= sizeof(buf)){
process_block(ptr);
ptr += sizeof(buf);
n_bits += sizeof(buf) * 8;
}
// process remaining part of block
for (; n; n--) add(*ptr++);
return *this;
}
sha1& add(const char *text){
if (!text) return *this;
return add(text, strlen(text));
}
sha1& finalize(){
// hashed text ends with 0x80, some padding 0x00 and the length in bits
add_byte_dont_count_bits(0x80);
while (i % 64 != 56) add_byte_dont_count_bits(0x00);
for (int j = 7; j >= 0; j--) add_byte_dont_count_bits(n_bits >> j * 8);
return *this;
}
const sha1& print_hex(
char *hex,
bool zero_terminate = true,
const char *alphabet = "0123456789abcdef"
) const {
// print hex
int k = 0;
for (int i = 0; i < 5; i++){
for (int j = 7; j >= 0; j--){
hex[k++] = alphabet[(state[i] >> j * 4) & 0xf];
}
}
if (zero_terminate) hex[k] = '\0';
return *this;
}
const sha1& print_base64(char *base64, bool zero_terminate = true) const {
static const uint8_t *table = (const uint8_t*)
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"abcdefghijklmnopqrstuvwxyz"
"0123456789"
"+/";
uint32_t triples[7] = {
((state[0] & 0xffffff00) >> 1*8),
((state[0] & 0x000000ff) << 2*8) | ((state[1] & 0xffff0000) >> 2*8),
((state[1] & 0x0000ffff) << 1*8) | ((state[2] & 0xff000000) >> 3*8),
((state[2] & 0x00ffffff) << 0*8),
((state[3] & 0xffffff00) >> 1*8),
((state[3] & 0x000000ff) << 2*8) | ((state[4] & 0xffff0000) >> 2*8),
((state[4] & 0x0000ffff) << 1*8),
};
for (int i = 0; i < 7; i++){
uint32_t x = triples[i];
base64[i*4 + 0] = table[(x >> 3*6) % 64];
base64[i*4 + 1] = table[(x >> 2*6) % 64];
base64[i*4 + 2] = table[(x >> 1*6) % 64];
base64[i*4 + 3] = table[(x >> 0*6) % 64];
}
base64[SHA1_BASE64_SIZE - 2] = '=';
if (zero_terminate) base64[SHA1_BASE64_SIZE - 1] = '\0';
return *this;
}
};