-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #16 from dussong/gd-RPItests
test cg and RI functions
- Loading branch information
Showing
8 changed files
with
602 additions
and
7 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,264 @@ | ||
# Alternative to the computation of rotation equivariant coupling coefficients | ||
|
||
using PartialWaveFunctions | ||
using Combinatorics | ||
using LinearAlgebra | ||
|
||
export re_basis_new, ri_basis_new, ind_corr_s1, ind_corr_s2, MatFmi, ML0 | ||
|
||
function CG(l,m,L,N) | ||
M=m[1]+m[2] | ||
if L[2]<abs(M) | ||
return 0. | ||
else | ||
C=PartialWaveFunctions.clebschgordan(l[1],m[1],l[2],m[2],L[2],M) | ||
end | ||
for k in 3:N | ||
if L[k]<abs(M+m[k]) | ||
return 0. | ||
elseif L[k-1]<abs(M) | ||
return 0. | ||
else | ||
C*=PartialWaveFunctions.clebschgordan(L[k-1],M,l[k],m[k],L[k],M+m[k]) | ||
M+=m[k] | ||
end | ||
end | ||
return C | ||
end | ||
|
||
function SetLl0(l,N) | ||
set = Vector{Int64}[] | ||
for k in abs(l[1]-l[2]):l[1]+l[2] | ||
push!(set, [0; k]) | ||
end | ||
for k in 3:N-1 | ||
setL=set | ||
set=Vector{Int64}[] | ||
for a in setL | ||
for b in abs(a[k-1]-l[k]):a[k-1]+l[k] | ||
push!(set, [a; b]) | ||
end | ||
end | ||
end | ||
setL=set | ||
set=Vector{Int64}[] | ||
for a in setL | ||
if a[N-1]==l[N] | ||
push!(set, [a; 0]) | ||
end | ||
end | ||
return set | ||
end | ||
|
||
function SetLl(l,N,L) | ||
set = Vector{Int64}[] | ||
for k in abs(l[1]-l[2]):l[1]+l[2] | ||
push!(set, [0; k]) | ||
end | ||
for k in 3:N-1 | ||
setL=set | ||
set=Vector{Int64}[] | ||
for a in setL | ||
for b in abs(a[k-1]-l[k]):a[k-1]+l[k] | ||
push!(set, [a; b]) | ||
end | ||
end | ||
end | ||
setL=set | ||
set=Vector{Int64}[] | ||
for a in setL | ||
if (abs.(a[N-1]-l[N]) <= L)&&(L <= (a[N-1]+l[N])) | ||
push!(set, [a; L]) | ||
end | ||
end | ||
return set | ||
end | ||
|
||
# Function that computes the set ML0 | ||
function ML0(l,N) | ||
setML = [[i] for i in -abs(l[1]):abs(l[1])] | ||
for k in 2:N-1 | ||
set = setML | ||
setML = Vector{Int64}[] | ||
for m in set | ||
append!(setML, [m; lk] for lk in -abs(l[k]):abs(l[k]) ) | ||
end | ||
end | ||
setML0=Vector{Int64}[] | ||
for m in setML | ||
s=sum(m) | ||
if abs(s) < abs(l[N])+1 | ||
push!(setML0, [m; -s]) | ||
end | ||
end | ||
return setML0 | ||
end | ||
|
||
# Function that computes the set ML (relative to equivariance L) | ||
function ML(l,N,L) | ||
setML = [[i] for i in -abs(l[1]):abs(l[1])] | ||
for k in 2:N-1 | ||
set = setML | ||
setML = Vector{Int64}[] | ||
for m in set | ||
append!(setML, [m; lk] for lk in -abs(l[k]):abs(l[k]) ) | ||
end | ||
end | ||
setML0=Vector{Int64}[] | ||
for m in setML | ||
s=sum(m) | ||
for mn in -L-s:L-s | ||
if abs(mn) < abs(l[N])+1 | ||
push!(setML0, [m; mn]) | ||
end | ||
end | ||
end | ||
return setML0 | ||
end | ||
|
||
function ri_basis_new(l) | ||
N=size(l,1) | ||
L=SetLl0(l,N) | ||
r=size(L,1) | ||
if r==0 | ||
return zeros(Float64, 0, 0) | ||
else | ||
setML0=ML0(l,N) | ||
sizeML0=length(setML0) | ||
U=zeros(Float64, r, sizeML0) | ||
M = Vector{Int64}[] | ||
for (j,m) in enumerate(setML0) | ||
push!(M,m) | ||
for i in 1:r | ||
U[i,j]=CG(l,m,L[i],N) | ||
end | ||
end | ||
end | ||
return U,M | ||
end | ||
|
||
function re_basis_new(l,L) | ||
N=size(l,1) | ||
Ll=SetLl(l,N,L) | ||
r=size(Ll,1) | ||
if r==0 | ||
return zeros(Float64, 0, 0) | ||
else | ||
setML0=ML(l,N,L) | ||
sizeML0=length(setML0) | ||
U=zeros(Float64, r, sizeML0) | ||
M = Vector{Int64}[] | ||
for (j,m) in enumerate(setML0) | ||
push!(M,m) | ||
for i in 1:r | ||
U[i,j]=CG(l,m,Ll[i],N) | ||
end | ||
end | ||
end | ||
return U,M | ||
end | ||
|
||
|
||
# Function that computes the permutations that let n and l invariant | ||
function Snl(N,n,l) | ||
if n==n[1]*ones(N) | ||
if l==l[1]*ones(N) | ||
return permutations(1:N) | ||
end | ||
end | ||
if N==1 | ||
return Set([[1]]) | ||
elseif (n[N-1],l[N-1])!=(n[N],l[N]) | ||
S=Set() | ||
Sn=Snl(N-1,n[1:N-1],l[1:N-1]) | ||
for x in Sn | ||
append!(x,[N]) | ||
union!(S,Set([x])) | ||
end | ||
else | ||
S=Set() | ||
k=N | ||
while (n[k-1],l[k-1])==(n[k],l[k]) && k>2 | ||
k-=1 | ||
end | ||
if k==2 && (n[1],l[1])==(n[2],l[2]) | ||
return Set(permutations(1:N)) | ||
else | ||
Sn=Snl(k-1,n[1:k-1],l[1:k-1]) | ||
for x in Sn | ||
for s in Set(permutations(k:N)) | ||
y=copy(x) | ||
append!(y,s) | ||
union!(S,Set([y])) | ||
end | ||
end | ||
end | ||
end | ||
return S | ||
end | ||
|
||
|
||
#Function that computes the set of classes using the set Ml0 and the possible permutations | ||
function class(setML0,sigma,N,l) | ||
setclass=Vector{Vector{Int64}}[] | ||
pop!(setML0,zeros(Int64,N)) | ||
while setML0!=Set() | ||
x=pop!(setML0) | ||
p=[x] | ||
for s in sigma | ||
y=x[s] | ||
if y in setML0 | ||
append!(p,[y]) | ||
pop!(setML0,y) | ||
end | ||
end | ||
append!(setclass,[p]) | ||
end | ||
setclasses=Vector{Vector{Int64}}[] | ||
for x in setclass | ||
for y in setclass | ||
if x==y | ||
if minimum(x)==minimum(-x) | ||
if iseven(sum(l)) | ||
append!(setclasses,[x]) | ||
end | ||
end | ||
elseif minimum(x)==minimum(-y) | ||
if y<x | ||
append!(setclasses,[x]) | ||
end | ||
end | ||
end | ||
end | ||
if iseven(sum(l)) | ||
append!(setclasses,[[zeros(N)]]) | ||
end | ||
setclasses | ||
end | ||
|
||
|
||
|
||
# Function that computes the matrix ( f(m,i) ) | ||
function MatFmi(n,l) | ||
N=size(l,1) | ||
L=SetLl0(l,N) | ||
r=size(L,1) | ||
if r==0 | ||
return zeros(Float64, 0, 0) | ||
else | ||
ML00 = ML0(l,N) | ||
setML0=Set(ML00) | ||
sigma = Snl(N,n,l) | ||
setclass=class(setML0,sigma,N,l) | ||
sizeML0=length(setclass) | ||
Matrix=zeros(Float64, r, sizeML0) | ||
for i in 1:r | ||
for j in 1:sizeML0 | ||
for m in setclass[j] | ||
Matrix[i,j]+=CG(l,m,L[i],N) | ||
end | ||
end | ||
end | ||
end | ||
return Matrix, ML00 | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -4,4 +4,6 @@ include("yyvector.jl") | |
|
||
include("obsolete/obsolete.jl") | ||
|
||
include("O3_alternative.jl") | ||
|
||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.