-
Notifications
You must be signed in to change notification settings - Fork 2
/
phyloclusters.py
319 lines (223 loc) · 9.07 KB
/
phyloclusters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Apr 15 15:29:16 2019
@author: acabbia
"""
import os
import cobra
import pandas as pd
import grakel as gk
import numpy as np
from numpy import unique
from itertools import permutations
from scipy.spatial.distance import pdist , jaccard , squareform
from sklearn.cluster import AgglomerativeClustering , SpectralClustering
from sklearn.metrics import accuracy_score , confusion_matrix
def modelNet(model):
#Returns a grakel.Graph object from a cobra.model object
edges_in = []
edges_out = []
edges = []
for r in model.reactions:
# enumerate 'substrates -> reactions' edges
substrates = [s.id for s in r.reactants]
edges_in.extend([(s,r.id) for s in substrates])
# enumerate 'reactions -> products' edges
products = [p.id for p in r.products]
edges_out.extend([(p,r.id) for p in products])
# Join lists
edges.extend(edges_in)
edges.extend(edges_out)
#labels
label_m = {m.id:m.name for m in model.metabolites}
label_r = {r.id:r.name for r in model.reactions}
label_nodes = label_m
label_nodes.update(label_r)
label_edges= {p:p for p in edges}
g = gk.Graph(edges, node_labels=label_nodes, edge_labels=label_edges)
return g
def make_binary_mat(library_folder,ref_model):
#returns 3 binary matrices containing info about wheter reaction/metabolite/gene[i]
# from parent model has beeen added in each "contextualized" model
reactions_matrix = pd.DataFrame(index=[r.id for r in ref_model.reactions])
metabolite_matrix = pd.DataFrame(index=[m.id for m in ref_model.metabolites])
gene_matrix = pd.DataFrame(index=[g.id for g in ref_model.genes])
for filename in sorted(os.listdir(library_folder)):
model = cobra.io.read_sbml_model(library_folder+filename)
print("loading:", model.name)
rxns = []
mets = []
genes = []
label = str(filename).split('.')[0]
for r in ref_model.reactions:
if r in model.reactions:
rxns.append(1)
else:
rxns.append(0)
for m in ref_model.metabolites:
if m in model.metabolites:
mets.append(1)
else:
mets.append(0)
for g in ref_model.genes:
if g in model.genes:
genes.append(1)
else:
genes.append(0)
reactions_matrix[label] = pd.Series(rxns).values
metabolite_matrix[label] = pd.Series(mets).values
gene_matrix[label] = pd.Series(genes).values
print("Done!")
return reactions_matrix, metabolite_matrix, gene_matrix
def CalculateAccuracy(y, y_hat):
accuracy = 0
bestP = []
perm = permutations(unique(y))
for p in perm:
tr = dict(zip(p, list(range(len(unique(y))))))
y_tr = np.array([tr[v] for v in y])
testAccuracy = accuracy_score(y_tr,y_hat)
if testAccuracy > accuracy:
accuracy = testAccuracy
bestP.append((p,testAccuracy))
P_df = pd.DataFrame(bestP)
bestLabel = list(P_df.max()[0])
inv_tr = dict(zip(list(range(len(unique(y)))),bestLabel))
inv_y_hat = np.array([inv_tr[v] for v in y_hat])
cm = confusion_matrix(y , inv_y_hat , bestLabel)
return accuracy , bestLabel , cm
def HCClust(DM, trueLabel):
HC = AgglomerativeClustering(n_clusters=len(trueLabel.unique()), affinity='precomputed', linkage='average').fit(DM)
y_pred = HC.labels_
accHC , bestLabHC, cmHC = CalculateAccuracy(trueLabel, y_pred)
return accHC , bestLabHC , cmHC
def SCClust(DM, trueLabel):
SC = SpectralClustering(n_clusters=len(trueLabel.unique()), affinity='precomputed').fit(1-DM)
y_pred = SC.labels_
accSC , bestLabSC, cmSC = CalculateAccuracy(trueLabel, y_pred)
return accSC , bestLabSC , cmSC
#%%
model_library_folder = '/home/acabbia/Documents/Muscle_Model/models/AGORA_1.03/'
ref_model_file = '/home/acabbia/Documents/Muscle_Model/models/AGORA_universe.xml'
models_taxonomy = pd.read_csv('/home/acabbia/Documents/Muscle_Model/GSMM-distance/agora_taxonomy.tsv',sep = '\t').sort_values(by='organism')
models_taxonomy.fillna(method='bfill', axis=0, inplace=True)
### Replaces and aggregates classes with less than 10 samples into a new "Other" class
for c in ['phylum','oxygenstat', 'gram', 'mtype']:
for s in list(models_taxonomy[c].value_counts()[models_taxonomy[c].value_counts()<10].index):
models_taxonomy[c].replace(s,'Other', inplace=True)
#%%
#####
# MAKE GK DM
####
graphList = []
label = []
for model_name in sorted(os.listdir(model_library_folder)):
print('Loading', model_name)
model = cobra.io.read_sbml_model(model_library_folder+model_name)
label.append(model.name)
g = modelNet(model)
graphList.append(g)
print('Done')
GL = pd.DataFrame(list(zip(label, graphList)), columns = ['organism','graph'])
#compute GK similarity matrix
kernel = gk.WeisfeilerLehman(base_kernel = gk.VertexHistogram, normalize= True)
GK = pd.DataFrame(kernel.fit_transform(GL['graph'].values))
GK.columns = GK.index = label
# take inverse as distance matrix
DM_GK = 1 - GK
####
# MAKE JACCARD DM
###
# make binary matrices (rxn, mets and gene matrices)
ref_model = cobra.io.read_sbml_model(ref_model_file)
reactions_matrix, metabolite_matrix, gene_matrix = make_binary_mat(model_library_folder, ref_model)
# compute pw distance matrix
DM_JD = pd.DataFrame(squareform(pdist(reactions_matrix.T, metric = jaccard)),
index = reactions_matrix.columns, columns = reactions_matrix.columns)
#%%
#####
# Hierarchical Clustering (average linkage)
#####
from datetime import datetime
# Network Similarity
print("Graph kernel similarity")
print("================================================")
gk_acc = []
for c in ['phylum','oxygenstat', 'gram', 'mtype', 'metabolism']:
#safety check to catch unwanted "NaN"'s
models_taxonomy[c][models_taxonomy[c].isna()]=='Other'
start = datetime.now()
print('Clustering by:', c)
acc, bestlabel, cm = HCClust(DM_GK, models_taxonomy[c])
print('Accuracy:', acc)
gk_acc.append(acc)
print(' ')
end = datetime.now()
scriptTime = end - start
print("Took:",scriptTime.total_seconds(),'s')
print("================================================")
# Hierarchical Clustering (average linkage)
# Jaccard Similarity
print("Jaccard similarity")
print("================================================")
jd_acc = []
for c in ['phylum','oxygenstat', 'gram', 'mtype', 'metabolism']:
#safety check to catch unwanted "NaN"'s
models_taxonomy[c][models_taxonomy[c].isna()]=='Other'
start = datetime.now()
print('Clustering by:', c)
acc, bestlabel, cm = HCClust(DM_JD, models_taxonomy[c])
print('Accuracy:', acc)
jd_acc.append(acc)
print(' ')
end = datetime.now()
scriptTime = end - start
print("Took:",scriptTime.total_seconds(),'s')
print("================================================")
HC_clustering_results = pd.DataFrame(index=['phylum','oxygenstat', 'gram', 'mtype', 'metabolism'])
HC_clustering_results['Network Similarity'] = gk_acc
HC_clustering_results['Reactions Similarity'] = jd_acc
HC_clustering_results.plot.bar(title= 'Hierarchical clustering: accuracy')
#%%
#####
# Spectral Clustering
#####
print("Graph kernel similarity")
print("================================================")
gk_acc = []
for c in ['phylum','oxygenstat', 'gram', 'mtype', 'metabolism']:
#safety check to catch unwanted "NaN"'s
models_taxonomy[c][models_taxonomy[c].isna()]=='Other'
start = datetime.now()
print('Clustering by:', c)
acc, bestlabel, cm = SCClust(DM_GK, models_taxonomy[c])
print('Accuracy:', acc)
gk_acc.append(acc)
print(' ')
end = datetime.now()
scriptTime = end - start
print("Took:",scriptTime.total_seconds(),'s')
print("================================================")
# Hierarchical Clustering (average linkage)
# Jaccard Similarity
print("Jaccard similarity")
print("================================================")
jd_acc = []
for c in ['phylum','oxygenstat', 'gram', 'mtype', 'metabolism']:
#safety check to catch unwanted "NaN"'s
models_taxonomy[c][models_taxonomy[c].isna()]=='Other'
start = datetime.now()
print('Clustering by:', c)
acc, bestlabel, cm = SCClust(DM_JD, models_taxonomy[c])
print('Accuracy:', acc)
jd_acc.append(acc)
print(' ')
end = datetime.now()
scriptTime = end - start
print("Took:",scriptTime.total_seconds(),'s')
print("================================================")
SC_clustering_results = pd.DataFrame(index=['phylum','oxygenstat', 'gram', 'mtype', 'metabolism'])
SC_clustering_results['Network Similarity'] = gk_acc
SC_clustering_results['Reactions Similarity'] = jd_acc
SC_clustering_results.plot.bar(title= 'Spectral clustering: accuracy')