-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfairness_bound_general_shifting_finite_sampling.py
111 lines (96 loc) · 5.6 KB
/
fairness_bound_general_shifting_finite_sampling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import numpy as np
from scipy.optimize import fmin
import math
import scipy.optimize
from tqdm import tqdm
M = 1
K, R = 0.5, 0.5
P_00, P_01, P_10, P_11 = 0.25,0.25,0.25,0.25
E_00_up, E_01_up, E_10_up, E_11_up = 0,0,0,0
E_00_low, E_01_low, E_10_low, E_11_low = 0,0,0,0
V_00_up, V_01_up, V_10_up, V_11_up = 0,0,0,0
V_00_low, V_01_low, V_10_low, V_11_low = 0,0,0,0
def fairness_grammian_improve(x):
global M, K, R, P_00, P_01, P_10, P_11, E_00_up, E_01_up, E_10_up, E_11_up, E_00_low, E_01_low, E_10_low, E_11_low, \
V_00_up, V_01_up, V_10_up, V_11_up, V_00_low, V_01_low, V_10_low, V_11_low, k_up, k_low, r_up, r_low
# due to the coefficients of E_00 > 0, consider the coefficients before
C_00_up = M - E_00_up - V_00_low / (M - E_00_low)
C_01_up = M - E_01_up - V_01_low / (M - E_01_low)
C_10_up = M - E_10_up - V_10_low / (M - E_10_low)
C_11_up = M - E_11_up - V_11_low / (M - E_11_low)
C_00_low = M - E_00_up - V_00_up / (M - E_00_up)
C_01_low = M - E_01_up - V_01_up / (M - E_01_up)
C_10_low = M - E_10_up - V_10_up / (M - E_10_up)
C_11_low = M - E_11_up - V_11_up / (M - E_11_up)
res = max(k_up*r_up*(E_00_up+C_00_up),k_low*r_low*(E_00_up+C_00_up)) + max(k_up*(1-r_low)*(E_01_up+C_01_up),k_low*(1-r_up)*(E_01_up+C_01_up)) \
+ max((1-k_low)*r_up*(E_10_up+C_10_up),(1-k_up)*r_low*(E_10_up+C_10_up)) + max((1-k_up)*(1-r_up)*(E_11_up+C_11_up),(1-k_low)*(1-r_low)*(E_11_up+C_11_up)) \
- x[0]*min(k_low*r_low*C_00_low,k_up*r_up*C_00_low) - x[1]*min(k_low*(1-r_up)*C_01_low,k_up*(1-r_low)*C_01_low) \
- x[2]*min((1-k_low)*r_up*C_10_low,(1-k_up)*r_low*C_10_low) - x[3]*min((1-k_low)*(1-r_low)*C_11_low,(1-k_up)*(1-r_up)*C_11_low) \
+ 2*k_up*r_up*math.sqrt(x[0]*(1-x[0])*V_00_up) + 2*k_up*(1-r_low)*math.sqrt(x[1]*(1-x[1])*V_01_up) \
+ 2*(1-k_low)*r_up*math.sqrt(x[2]*(1-x[2])*V_10_up) + 2*(1-k_low)*(1-r_low)*math.sqrt(x[3]*(1-x[3])*V_11_up)
return -res
def fairness_upper_bound_general_shifting_finite_sampling(hellinger_distances, lambda_P, E_P_up, E_P_low, V_P_up, V_P_low, gamma_k, gamma_r, interval_kr, lambda_P_low, lambda_P_up):
global M, K, R, P_00, P_01, P_10, P_11, E_00_up, E_01_up, E_10_up, E_11_up, E_00_low, E_01_low, E_10_low, E_11_low, \
V_00_up, V_01_up, V_10_up, V_11_up, V_00_low, V_01_low, V_10_low, V_11_low, k_up, k_low, r_up, r_low
if gamma_k == 0.5:
num_intervals_k = 1
else:
num_intervals_k = int((1-2*gamma_k)/interval_kr)
if gamma_r == 0.5:
num_intervals_r = 1
else:
num_intervals_r = int((1 - 2 * gamma_r) / interval_kr)
gamma = 0.0
P_00, P_01, P_10, P_11 = lambda_P[0], lambda_P[1], lambda_P[2], lambda_P[3]
E_00_up, E_01_up, E_10_up, E_11_up = E_P_up[0], E_P_up[1], E_P_up[2], E_P_up[3]
E_00_low, E_01_low, E_10_low, E_11_low = E_P_low[0], E_P_low[1], E_P_low[2], E_P_low[3]
V_00_up, V_01_up, V_10_up, V_11_up = V_P_up[0], V_P_up[1], V_P_up[2], V_P_up[3]
V_00_low, V_01_low, V_10_low, V_11_low = V_P_low[0], V_P_low[1], V_P_low[2], V_P_low[3]
upper_bounds = []
for dist in tqdm(hellinger_distances):
upper = 0
upper_k = -1
upper_r = -1
upper_x = None
for k in tqdm(np.linspace(gamma_k,1-gamma_k-interval_kr,num_intervals_k)):
for r in np.linspace(gamma_r,1-gamma_r-interval_kr,num_intervals_r):
K = k
R = r
epsilon = 0.0001
k_up = k + interval_kr
k_low = k
r_up = r + interval_kr
r_low = r
if math.sqrt(k_up*r_up*P_00) + math.sqrt(k_up*(1-r_low)*P_01) \
+ math.sqrt((1-k_low)*r_up*P_10) + math.sqrt((1-k_low)*(1-r_low)*P_11) -1 + dist**2 < epsilon:
continue
lower_bnd_of_x = []
for i in range(4):
rho_up = math.sqrt(1-(1+(M-E_P_low[i])**2/V_P_low[i])**(-0.5))
lower_bnd_of_x.append((1-rho_up**2)**2)
result = scipy.optimize.minimize(fairness_grammian_improve,
np.array([1-epsilon,1-epsilon,1-epsilon,1-epsilon,lambda_P[0],lambda_P[1],lambda_P[2],lambda_P[3]]),
bounds=[(lower_bnd_of_x[0]+epsilon,1-epsilon),
(lower_bnd_of_x[1]+epsilon,1-epsilon),
(lower_bnd_of_x[2]+epsilon,1-epsilon),
(lower_bnd_of_x[3]+epsilon,1-epsilon),
(lambda_P_low[0]-epsilon,lambda_P_up[0]+epsilon),
(lambda_P_low[1]-epsilon,lambda_P_up[1]+epsilon),
(lambda_P_low[2]-epsilon,lambda_P_up[2]+epsilon),
(lambda_P_low[3]-epsilon,lambda_P_up[3]+epsilon)],
constraints=[
{'type': 'ineq',
'fun': lambda x: math.sqrt(k_up*r_up*P_00*x[0]) + math.sqrt(k_up*(1-r_low)*P_01*x[1]) \
+ math.sqrt((1-k_low)*r_up*P_10*x[2]) + math.sqrt((1-k_low)*(1-r_low)*P_11*x[3]) -1 + dist**2 -epsilon},
{'type': 'eq',
'fun': lambda x: x[4]+x[5]+x[6]+x[7]-1}
])
upper_tmp = -fairness_grammian_improve(result.x)
if upper_tmp > upper:
upper = upper_tmp
upper_k = k
upper_r = r
upper_x=result.x
upper_bounds.append(upper)
# print(f'{dist}: {upper} k and r are: {upper_k} {upper_r} solution x is: {upper_x}')
return upper_bounds