-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgenerate_text.py
111 lines (89 loc) · 3.61 KB
/
generate_text.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import torch
import tqdm
import pandas as pd
import ast
import sys
from transformers import AutoTokenizer, AutoModelForCausalLM
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
smoothie = SmoothingFunction().method4
tqdm.tqdm.pandas()
pretrained_model_name = sys.argv[1]
print(f'training for model: {pretrained_model_name}')
import feather
df = feather.read_dataframe('text_benchmark.feather')
def find_batch_size():
if pretrained_model_name == 'codeparrot/codeparrot': # The parrot is really hungry 🦜
return 10
if n_params < 0.35:
return 160
elif n_params < 1.0:
return 128
elif n_params < 3.0:
return 18
else:
return 10
base_tokenizer = AutoTokenizer.from_pretrained(
'EleutherAI/gpt-neo-1.3B',
padding_side='left',
add_special_tokens=True
)
tokenizer = AutoTokenizer.from_pretrained(
pretrained_model_name,
padding_side='left',
add_special_tokens=True,
)
model = AutoModelForCausalLM.from_pretrained(
pretrained_model_name,
vocab_size = tokenizer.vocab_size,
torch_dtype="auto",
low_cpu_mem_usage=True,
trust_remote_code=True
).to(device='cuda:0', non_blocking=True)
n_params = sum([p.numel() for p in model.parameters()]) / 10**9 ## billion
print(f"Weights loaded: {pretrained_model_name} (# params: {n_params:.2f}B)")
def generate(tokenizer, model, prompt):
with torch.no_grad():
## prompt to tensor
tokens = torch.tensor(prompt).to(device='cuda:0')
## Generate texts from tokens.
gen_tokens = model.generate(tokens, max_length=100, pad_token_id=tokenizer.eos_token_id)
generated = [g.tolist() for g in gen_tokens]
return generated
print(hasattr(tokenizer, "vocab"))
if hasattr(tokenizer, "vocab") and base_tokenizer.vocab != tokenizer.vocab:
print('Different tokenizers: Re-encoding samples...')
df['sample'] = df['sample'].progress_apply(lambda x: tokenizer.encode(base_tokenizer.decode(x)))
df = df[df['sample'].apply(len) >= 100].reset_index(drop=True) # drop samples that are too short
df['prefix'] = df['sample'].progress_apply(lambda x: x[:50])
df['suffix'] = df['sample'].progress_apply(lambda x: x[50:100])
else: # same tokenizer
print('Same tokenizers: No need to re-encode samples...')
df['prefix'] = df['sample'].progress_apply(lambda x: x[:50])
df['suffix'] = df['sample'].progress_apply(lambda x: x[50:100])
texts = []
# iterate with batch size
batch_size = find_batch_size() # 18 for 2B. 128 for 350M. 160 for 125M.
with tqdm.tqdm(total=len(df)) as pbar:
for i in range(0, len(df), batch_size):
batch = list(df.iloc[i:i+batch_size].prefix)
generated = generate(tokenizer, model, prompt=batch)
texts.extend(generated)
pbar.update(batch_size)
# calculate BLEU-4 score
def calc_bleu4(tokenizer, sample, generated):
ref = tokenizer.decode(sample)
hyp = tokenizer.decode(generated)
return sentence_bleu([ref], hyp, weights=(0.25, 0.25, 0.25, 0.25), smoothing_function=smoothie)
df['gen_tokens'] = texts
df['gen_suffix'] = df['gen_tokens'].progress_apply(lambda x: x[50:100])
df['bleu4'] = df.progress_apply(lambda x: calc_bleu4(tokenizer, x['suffix'], x['gen_suffix']), axis=1)
df['em'] = df['bleu4'] == 1
print(pretrained_model_name)
# save results
name = pretrained_model_name.replace('/', '_')
df.to_pickle(f'results/{name}text_benchmark.pkl')
print(f'num_params: {round(n_params, 3) * 1000}')
# count number of exact match rounded to 4 decimals
print(f"em: {df['em'].mean()}")
# average bleu4 score
print(f"bleu4: {df['bleu4'].mean()}")