Skip to content

πŸ§­πŸ” A PDDL Planner in Python partially wrapping PDDL.jl using JuliaPy

License

Notifications You must be signed in to change notification settings

APLA-Toolbox/PythonPDDL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Logo

Python PDDL

✨ A Python wrapper using JuliaPy for the PDDL.jl parser package and implementing its own planners. ✨

tests build codecov CodeFactor Percentage of issues still open GitHub license GitHub contributors PipPerMonths Pip version fury.io

Report Bug Β· Request Feature

Loved the project? Please consider donating to help it improve!

Features 🌱

  • ✨ Built to be expanded: easy to add new planners
  • πŸ–₯️ Supported on MacOS and Ubuntu
  • 🎌 Built with Julia and Python
  • πŸ”Ž Uninformed Planners (DFS, BFS)
  • 🧭 Informed Planners (Dijkstra, A*, Greedy Best First)
  • πŸ“Š Several general purpose heuristics (Goal Count, Delete Relaxation [Hmax, Hadd], Critical Path [H1, H2, H3], Relaxed Critical Path [H1, H2, H3])
  • 🍻 Maintained (Incoming: Landmarks Heuristics...)

Docker πŸ‹

You can also use the project in a docker container using docker-pythonpddl

Install πŸ’Ύ

  • Install Python (3.7.5 is the tested version)

  • Install Julia

$ wget https://julialang-s3.julialang.org/bin/linux/x64/1.5/julia-1.5.2-linux-x86_64.tar.gz
$ tar -xvzf julia-1.5.2-linux-x86_64.tar.gz
$ sudo cp -r julia-1.5.2 /opt/
$ sudo ln -s /opt/julia-1.5.2/bin/julia /usr/local/bin/julia
  • Install Julia dependencies
$ julia --color=yes -e 'using Pkg; Pkg.add(Pkg.PackageSpec(path="https://github.com/APLA-Toolbox/PDDL.jl"))'
$ julia --color=yes -e 'using Pkg; Pkg.add(Pkg.PackageSpec(path="https://github.com/JuliaPy/PyCall.jl"))'
  • Package installation (only if used as library, not needed to run the scripts)
$ python3 -m pip install --upgrade pip
$ python3 -m pip install jupyddl

IPC Script βš”οΈ

  • Clone the project :
$ git clone https://github.com/APLA-Toolbox/PythonPDDL
$ cd PythonPDDL
$ python3 -m pip install -r requirements.txt
$ git submodule update --init // Only if you need PDDL files for testing
  • Run the script :
$ cd scripts/
$ python ipc.py "path_to_domain.pddl" "path_to_problem.pddl" "path_to_desired_output_file"

The output file will show the path with a list of state, the path with a list of action and the metrics proposed by IPC2018.

Basic Usage πŸ“‘

If using the jupyddl pip package:

  • If you want to use the data analysis tool, create a pddl-examples folder with pddl instances subfolders containing "problem.pddl" and "domain.pddl". (refer to APLA-Toolbox/pddl-examples)

If you want to use it by cloning the project:

$ git clone https://github.com/APLA-Toolbox/PythonPDDL
$ cd PythonPDDL
$ python3 -m pip install -r requirements.txt
$ git submodule update --init

You should have a pddl-examples folder containing PDDL instances.

AutomatedPlanner Class πŸ—ΊοΈ

from jupyddl import AutomatedPlanner # takes some time because it has to instantiate the Julia interface
apl = AutomatedPlanner("pddl-examples/dinner/domain.pddl", "pddl-examples/dinner/problem.pddl)

apl.available_heuristics
["basic/zero", "basic/goal_count", "delete_relaxation/h_max", "delete_relaxation/h_add"]

apl.initial_state
<PyCall.jlwrap PDDL.State(Set(Julog.Term[row(r1), column(c3), row(r3), row(r2), column(c2), column(c1)]), Set(Julog.Term[white(r2, c1), white(r1, c2), white(r3, c2), white(r2, c3)]), Dict{Symbol,Any}())>

actions = apl.available_actions(apl.initial_state)
[<PyCall.jlwrap flip_row(r1)>, <PyCall.jlwrap flip_row(r3)>, <PyCall.jlwrap flip_row(r2)>, <PyCall.jlwrap flip_column(c3)>, <PyCall.jlwrap flip_column(c2)>, <PyCall.jlwrap flip_column(c1)>]

apl.satisfies(apl.problem.goal, apl.initial_state)
False

apl.transition(apl.initial_state, actions[0])
<PyCall.jlwrap PDDL.State(Set(Julog.Term[row(r1), column(c3), row(r3), row(r2), column(c2), column(c1)]), Set(Julog.Term[white(r2, c1), white(r1, c1), white(r3, c2), white(r2, c3), white(r1, c3)]), Dict{Symbol,Any}())>

path = apl.breadth_first_search() # computes path ([]State) with BFS

print(apl.get_state_def_from_path(path))
[<PyCall.jlwrap PDDL.State(Set(Julog.Term[row(r1), column(c3), row(r3), row(r2), column(c2), column(c1)]), Set(Julog.Term[white(r2, c1), white(r1, c1), white(r3, c2), white(r2, c3), white(r1, c3)]), Dict{Symbol,Any}())>, <PyCall.jlwrap PDDL.State(Set(Julog.Term[row(r1), column(c3), row(r3), row(r2), column(c2), column(c1)]), Set(Julog.Term[white(r2, c1), white(r1, c1), white(r2, c3), white(r1, c3), white(r3, c3), white(r3, c1)]), Dict{Symbol,Any}())>, <PyCall.jlwrap PDDL.State(Set(Julog.Term[row(r1), column(c3), row(r3), row(r2), column(c2), column(c1)]), Set(Julog.Term[white(r2, c1), white(r1, c1), white(r1, c2), white(r3, c2), white(r2, c3), white(r1, c3), white(r3, c3), white(r3, c1), white(r2, c2)]), Dict{Symbol,Any}())>]

print(apl.get_actions_from_path(path))
[<PyCall.jlwrap flip_row(r1)>, <PyCall.jlwrap flip_row(r3)>, <PyCall.jlwrap flip_column(c2)>]

DataAnalyst (more like Viz) Class πŸ“ˆ

Make sure you have a pddl-examples folder where you run your environment that contains independent folders with "domain.pddl" and "problem.pddl" files, with those standard names. ( if you didn't generate with git submodule update )

from jupyddl import DataAnalyst

da = DataAnalyst()
da.plot_astar() # plots complexity statistics for all the problem.pddl/domain.pddl couples in the pddl-examples/ folder

da.plot_astar(problem="pddl-examples/dinner/problem.pddl", domain="pddl-examples/dinner/domain.pddl") # scatter complexity statistics for the provided pddl

da.plot_astar(heuristic_key="basic/zero") # use h=0 instead of goal_count for your computation

da.plot_dfs() # same as astar

da.comparative_data_plot() # Run all planners on the pddl-examples folder and plots them on the same figure, data is stored in a data.json file 

da.comparative_data_plot(astar=False) # Exclude astar from the comparative plot

da.comparative_data_plot(heuristic_key="basic/zero") # use zero heuristic for h based planners

da.comparative_data_plot(collect_new_data=False) # uses data.json to plot the data

da.comparative_astar_heuristic_plot() # compare results of astar with all available heuristics

Cite πŸ“°

If you use the project in your work, please consider citing it with:

@misc{https://doi.org/10.13140/rg.2.2.22418.89282,
  doi = {10.13140/RG.2.2.22418.89282},
  url = {http://rgdoi.net/10.13140/RG.2.2.22418.89282},
  author = {Erwin Lejeune},
  language = {en},
  title = {Jupyddl,  an extensible python library for PDDL planning and parsing},
  publisher = {Unpublished},
  year = {2021}
}

List of publications & preprints using jupyddl (please open a pull request to add missing entries):

Contribute πŸ†˜

Please see docs/CONTRIBUTING.md for more details on contributing!

Maintainers Ⓜ️

  • Erwin Lejeune
  • Sampreet Sarkar