diff --git a/src/psycop_model_training/config_schemas/eval.py b/src/psycop_model_training/config_schemas/eval.py index 15ca2172..dbc7157a 100644 --- a/src/psycop_model_training/config_schemas/eval.py +++ b/src/psycop_model_training/config_schemas/eval.py @@ -8,7 +8,7 @@ class EvalConfSchema(BaseModel): force: bool = False # Whether to force evaluation even if wandb is not "run". Used for testing. - table_1: bool = True + descriptive_stats_table: bool = True # Whether to generate table 1. top_n_feature_importances: int diff --git a/src/psycop_model_training/model_eval/base_artifacts/base_artifact_generator.py b/src/psycop_model_training/model_eval/base_artifacts/base_artifact_generator.py index 7c370b34..6e35ebd4 100644 --- a/src/psycop_model_training/model_eval/base_artifacts/base_artifact_generator.py +++ b/src/psycop_model_training/model_eval/base_artifacts/base_artifact_generator.py @@ -183,9 +183,9 @@ def get_descriptive_stats_table_artifact(self): """Returns descriptive stats table artifact.""" return [ ArtifactContainer( - label="table_1", + label="descriptive_stats_table", artifact=DescriptiveStatsTable( - self.eval_ds + self.eval_ds, ).generate_descriptive_stats_table(), ), ] @@ -225,8 +225,8 @@ def get_all_artifacts(self) -> list[ArtifactContainer]: """Generates artifacts from an EvalDataset.""" artifact_containers = self.create_base_plot_artifacts() - if self.cfg.eval.table_1: - artifact_containers += self.get_table_1_artifact() + if self.cfg.eval.descriptive_stats_table: + artifact_containers += self.get_descriptive_stats_table_artifact() if self.pipe_metadata and self.pipe_metadata.feature_importances: artifact_containers += self.get_feature_importance_artifacts()