-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
123 lines (107 loc) · 3.56 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import cv2
import json
import torch
import logging
import numpy as np
from fastapi import FastAPI, File, UploadFile, Form
from config import settings
from modeling.models import SimpleCNN, SimpleResNet, ComplexResNet, ComplexResNetV2
app = FastAPI()
logging.basicConfig(level=logging.INFO)
num_classes = settings.num_classes
model_type = settings.model_type
device = settings.device
file_json = "label_mapping.json"
file_desc_json = open(file_json)
label_mapping = json.load(file_desc_json)
logging.info(label_mapping)
file_model_local = f"./trained_models/{model_type}/{model_type}.pt"
file_model_cont = f"/data/models/{model_type}/{model_type}.pt"
logging.info(f"model_type: {model_type}")
if model_type == "simple_cnn":
overhead_mnist_model = SimpleCNN(num_classes=num_classes)
elif model_type == "simple_resnet":
overhead_mnist_model = SimpleResNet(num_classes=num_classes)
elif model_type == "medium_simple_resnet":
overhead_mnist_model = SimpleResNet(
list_num_res_units_per_block=[4, 4], num_classes=num_classes
)
elif model_type == "deep_simple_resnet":
overhead_mnist_model = SimpleResNet(
list_num_res_units_per_block=[6, 6], num_classes=num_classes
)
elif model_type == "complex_resnet":
overhead_mnist_model = ComplexResNet(
list_num_res_units_per_block=[4, 4, 4], num_classes=num_classes
)
elif model_type == "complex_resnet_v2":
overhead_mnist_model = ComplexResNetV2(
list_num_res_units_per_block=[4, 4, 4], num_classes=num_classes
)
try:
logging.info(f"loading model from {file_model_local}")
overhead_mnist_model.load_state_dict(
torch.load(file_model_local, map_location=device)
)
except:
logging.info(f"loading model from {file_model_cont}")
overhead_mnist_model.load_state_dict(
torch.load(file_model_cont, map_location=device)
)
overhead_mnist_model.to(device)
overhead_mnist_model.eval()
def get_prediction(img_arr: np.ndarray) -> str:
"""
---------
Arguments
---------
img_arr: ndarray
a numpy array of the image
-------
Returns
-------
pred_label_str : str
a string representing the label of the prediction
"""
img_arr = np.expand_dims(np.expand_dims(img_arr, 0), 0)
img_arr = img_arr.astype(np.float32) / 255.0
img_tensor = torch.tensor(img_arr).float()
img_tensor = img_tensor.to(device, dtype=torch.float)
pred_logits = overhead_mnist_model(img_tensor)
pred_label = torch.argmax(pred_logits, dim=1)
pred_label_arr = pred_label.detach().cpu().numpy()
pred_label_arr = np.squeeze(pred_label_arr)
pred_label_str = label_mapping[str(pred_label_arr)]
return pred_label_str
@app.get("/info")
def get_app_info() -> dict:
"""
-------
Returns
-------
dict_info : dict
a dictionary with info to be sent as a response to get request
"""
dict_info = {"app_name": settings.app_name, "version": settings.version}
return dict_info
@app.post("/predict")
def _file_upload(image_file: UploadFile = File(...)) -> dict:
"""
---------
Arguments
---------
image_file: object
an object of type UploadFile
-------
Returns
-------
response_json : dict
a dict as a response json for the post request
"""
logging.info(image_file)
img_str = image_file.file.read()
img_decoded = cv2.imdecode(np.frombuffer(img_str, np.uint8), 0)
pred_label_str = get_prediction(img_decoded)
response_json = {"name": image_file.filename, "prediction": pred_label_str}
logging.info(response_json)
return response_json