-
Notifications
You must be signed in to change notification settings - Fork 4
/
Bipartite.h
127 lines (115 loc) · 4.21 KB
/
Bipartite.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
#ifndef CH4_BIPARTITE_H
#define CH4_BIPARTITE_H
#include "../head/Graph.h"
/**
* The {@code Bipartite} class represents a data type for
* determining whether an undirected graph is bipartite or whether
* it has an odd-length cycle.
* The <em>isBipartite</em> operation determines whether the graph is
* bipartite. If so, the <em>color</em> operation determines a
* bipartition; if not, the <em>oddCycle</em> operation determines a
* cycle with an odd number of edges.
* <p>
* This implementation uses depth-first search.
* The constructor takes time proportional to <em>V</em> + <em>E</em>
* (in the worst case),
* where <em>V</em> is the number of vertices and <em>E</em> is the number of edges.
* Afterwards, the <em>isBipartite</em> and <em>color</em> operations
* take constant time; the <em>oddCycle</em> operation takes time proportional
* to the length of the cycle.
* See {@link BipartiteX} for a nonrecursive version that uses breadth-first
* search.
* <p>
* For additional documentation, see <a href="https://algs4.cs.princeton.edu/41graph">Section 4.1</a>
* of <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne.
*
* @author Robert Sedgewick
* @author Kevin Wayne
*/
class Bipartite {
public:
/**
* Determines whether an undirected graph is bipartite and finds either a
* bipartition or an odd-length cycle.
*
* @param G the graph
*/
Bipartite(Graph &G) : isBipartite(true), color(G.getV()), marked(G.getV()), edgeTo(G.getV()) {
for (int v = 0; v < G.getV(); v++) {
if (!marked[v]) {
dfs(G, v);
}
}
}
/**
* Returns true if the graph is bipartite.
*
* @return {@code true} if the graph is bipartite; {@code false} otherwise
*/
bool getisBipartite() {
return isBipartite;
}
/**
* Returns the side of the bipartite that vertex {@code v} is on.
*
* @param v the vertex
* @return the side of the bipartition that vertex {@code v} is on; two vertices
* are in the same side of the bipartition if and only if they have the
* same color
* @throws IllegalArgumentException unless {@code 0 <= v < V}
* @throws UnsupportedOperationException if this method is called when the graph
* is not bipartite
*/
bool getcolor(int v) {
validateVertex(v);
if (!isBipartite)
throw runtime_error("graph is not bipartite");
return color[v];
}
/**
* Returns an odd-length cycle if the graph is not bipartite, and
* {@code null} otherwise.
*
* @return an odd-length cycle if the graph is not bipartite
* (and hence has an odd-length cycle), and {@code null}
* otherwise
*/
stack<int> oddCycle() {
return cycle;
}
private:
// throw an IllegalArgumentException unless {@code 0 <= v < V}
void validateVertex(int v) {
int V = marked.size();
if (v < 0 || v >= V)
throw runtime_error("vertex " + to_string(v) + " is not between 0 and " + to_string(V - 1));
}
void dfs(Graph G, int v) {
marked[v] = true;
for (int w : G.getadj(v)) {
// short circuit if odd-length cycle found
if (!cycle.empty()) return;
// found uncolored vertex, so recur
if (!marked[w]) {
edgeTo[w] = v;
color[w] = !color[v];
dfs(G, w);
} // if v-w create an odd-length cycle, find it
else if (color[w] == color[v]) {
isBipartite = false;
cycle.push(w); // don't need this unless you want to include start vertex twice
for (int x = v; x != w; x = edgeTo[x]) {
cycle.push(x);
}
cycle.push(w);
}
}
}
private:
bool isBipartite; // is the graph bipartite?
vector<bool> color; // color[v] gives vertices on one side of bipartition
vector<bool> marked; // marked[v] = true iff v has been visited in DFS
vector<int> edgeTo; // edgeTo[v] = last edge on path to v
stack<int> cycle; // odd-length cycle
};
#endif //CH4_BIPARTITE_H