forked from kalwargupta/nltk
-
Notifications
You must be signed in to change notification settings - Fork 0
/
wordasFeature.py
46 lines (34 loc) · 1.08 KB
/
wordasFeature.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Jan 25 13:16:52 2019
@author: jeetu
"""
import nltk
import random
from nltk.corpus import movie_reviews
documents = [(list(movie_reviews.words(fileid)), category)
for category in movie_reviews.categories()
for fileid in movie_reviews.fileids(category)]
#this is similar to this method
'''
documents=[]
for category in movie_reviews.categories():
for fileid in movie_reviews.fileids(category):
documents.append(list(movie_reviews.word(fileid)),category)
'''
random.shuffle(documents)
#print (documents)
all_words=[]
for w in movie_reviews.words():
all_words.append(w.lower())
all_words=nltk.FreqDist(all_words)
word_features=list (all_words.keys())[:3000]
def find_features(document):
words = set(document)
features ={}
for w in word_features:
features[w]={w in words}
return features
print((find_features(movie_reviews.words('neg/cv000_29416.txt'))))
featuresets = [(find_features(rev), category) for (rev, category) in documents]