-
Notifications
You must be signed in to change notification settings - Fork 4
/
pretrain.py
239 lines (210 loc) · 7.47 KB
/
pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
"""
File: pretrain.py
-------------------
Pretrain the CodonTransformer model.
The dataset is a JSON file. You can use prepare_training_data from CodonData to
prepare the dataset. The repository README has a guide on how to prepare the
dataset and use this script.
"""
import argparse
import os
import pytorch_lightning as pl
import torch
from torch.utils.data import DataLoader
from transformers import BigBirdConfig, BigBirdForMaskedLM, PreTrainedTokenizerFast
from CodonTransformer.CodonUtils import (
MAX_LEN,
NUM_ORGANISMS,
TOKEN2MASK,
IterableJSONData,
)
class MaskedTokenizerCollator:
def __init__(self, tokenizer):
self.tokenizer = tokenizer
def __call__(self, examples):
tokenized = self.tokenizer(
[ex["codons"] for ex in examples],
return_attention_mask=True,
return_token_type_ids=True,
truncation=True,
padding=True,
max_length=MAX_LEN,
return_tensors="pt",
)
seq_len = tokenized["input_ids"].shape[-1]
species_index = torch.tensor([[ex["organism"]] for ex in examples])
tokenized["token_type_ids"] = species_index.repeat(1, seq_len)
inputs = tokenized["input_ids"]
targets = inputs.clone()
prob_matrix = torch.full(inputs.shape, 0.15)
prob_matrix[inputs < 5] = 0.0
selected = torch.bernoulli(prob_matrix).bool()
# 80% of the time, replace masked input tokens with respective mask tokens
replaced = torch.bernoulli(torch.full(selected.shape, 0.8)).bool() & selected
inputs[replaced] = torch.tensor(
list((map(TOKEN2MASK.__getitem__, inputs[replaced].numpy())))
)
# 10% of the time, we replace masked input tokens with random vector.
randomized = (
torch.bernoulli(torch.full(selected.shape, 0.1)).bool()
& selected
& ~replaced
)
random_idx = torch.randint(26, 90, inputs.shape, dtype=torch.long)
inputs[randomized] = random_idx[randomized]
tokenized["input_ids"] = inputs
tokenized["labels"] = torch.where(selected, targets, -100)
return tokenized
class plTrainHarness(pl.LightningModule):
def __init__(self, model, learning_rate, warmup_fraction):
super().__init__()
self.model = model
self.learning_rate = learning_rate
self.warmup_fraction = warmup_fraction
def configure_optimizers(self):
optimizer = torch.optim.AdamW(
self.model.parameters(),
lr=self.learning_rate,
)
lr_scheduler = {
"scheduler": torch.optim.lr_scheduler.OneCycleLR(
optimizer,
max_lr=self.learning_rate,
total_steps=self.trainer.estimated_stepping_batches,
pct_start=self.warmup_fraction,
),
"interval": "step",
"frequency": 1,
}
return [optimizer], [lr_scheduler]
def training_step(self, batch, batch_idx):
self.model.bert.set_attention_type("block_sparse")
outputs = self.model(**batch)
self.log_dict(
dictionary={
"loss": outputs.loss,
"lr": self.trainer.optimizers[0].param_groups[0]["lr"],
},
on_step=True,
prog_bar=True,
)
return outputs.loss
class EpochCheckpoint(pl.Callback):
def __init__(self, checkpoint_dir, save_interval):
super().__init__()
self.checkpoint_dir = checkpoint_dir
self.save_interval = save_interval
def on_train_epoch_end(self, trainer, pl_module):
current_epoch = trainer.current_epoch
if current_epoch % self.save_interval == 0 or current_epoch == 0:
checkpoint_path = os.path.join(
self.checkpoint_dir, f"epoch_{current_epoch}.ckpt"
)
trainer.save_checkpoint(checkpoint_path)
print(f"\nCheckpoint saved at {checkpoint_path}\n")
def main(args):
"""Pretrain the CodonTransformer model."""
pl.seed_everything(args.seed)
torch.set_float32_matmul_precision("medium")
# Load the tokenizer and model
tokenizer = PreTrainedTokenizerFast(
tokenizer_file=args.tokenizer_path,
bos_token="[CLS]",
eos_token="[SEP]",
unk_token="[UNK]",
sep_token="[SEP]",
pad_token="[PAD]",
cls_token="[CLS]",
mask_token="[MASK]",
)
config = BigBirdConfig(
vocab_size=len(tokenizer),
type_vocab_size=NUM_ORGANISMS,
sep_token_id=2,
)
model = BigBirdForMaskedLM(config=config)
harnessed_model = plTrainHarness(model, args.learning_rate, args.warmup_fraction)
# Load the training data
train_data = IterableJSONData(args.train_data_path, dist_env="slurm")
data_loader = DataLoader(
dataset=train_data,
collate_fn=MaskedTokenizerCollator(tokenizer),
batch_size=args.batch_size,
num_workers=0 if args.debug else args.num_workers,
persistent_workers=False if args.debug else True,
)
# Setup trainer and callbacks
save_checkpoint = EpochCheckpoint(args.checkpoint_dir, args.save_interval)
trainer = pl.Trainer(
default_root_dir=args.checkpoint_dir,
strategy="ddp_find_unused_parameters_true",
accelerator="gpu",
devices=1 if args.debug else args.num_gpus,
precision="16-mixed",
max_epochs=args.max_epochs,
deterministic=False,
enable_checkpointing=True,
callbacks=[save_checkpoint],
accumulate_grad_batches=args.accumulate_grad_batches,
)
# Pretrain the model
trainer.fit(harnessed_model, data_loader)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Pretrain the CodonTransformer model.")
parser.add_argument(
"--tokenizer_path",
type=str,
required=True,
help="Path to the tokenizer model file",
)
parser.add_argument(
"--train_data_path",
type=str,
required=True,
help="Path to the training data JSON file",
)
parser.add_argument(
"--checkpoint_dir",
type=str,
required=True,
help="Directory where checkpoints will be saved",
)
parser.add_argument(
"--batch_size", type=int, default=6, help="Batch size for training"
)
parser.add_argument(
"--max_epochs", type=int, default=5, help="Maximum number of epochs to train"
)
parser.add_argument(
"--num_workers", type=int, default=5, help="Number of workers for data loading"
)
parser.add_argument(
"--accumulate_grad_batches",
type=int,
default=1,
help="Number of batches to accumulate gradients",
)
parser.add_argument(
"--num_gpus", type=int, default=16, help="Number of GPUs to use for training"
)
parser.add_argument(
"--learning_rate",
type=float,
default=5e-5,
help="Learning rate for the optimizer",
)
parser.add_argument(
"--warmup_fraction",
type=float,
default=0.1,
help="Fraction of total steps to use for warmup",
)
parser.add_argument(
"--save_interval", type=int, default=5, help="Save checkpoint every N epochs"
)
parser.add_argument(
"--seed", type=int, default=123, help="Random seed for reproducibility"
)
parser.add_argument("--debug", action="store_true", help="Enable debug mode")
args = parser.parse_args()
main(args)