forked from sudeepgarg86/skinDiseasePrediction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlabeling data.py
41 lines (28 loc) · 1.29 KB
/
labeling data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import os
from glob import glob
from PIL import Image
%matplotlib inline
base = 'C:\cloudxlab\skin_identification\dataverse_files'
metadata = pd.read_csv(os.path.join(base,'HAM10000_metadata.csv'))
#metadata.info()
#if we combine data into one directory then no need to mention *
image_path = {os.path.splitext(os.path.basename(x))[0]: x
for x in glob(os.path.join('C:\cloudxlab\skin_identification\dataverse_files/','*','*.jpg'))}
metadata['path'] = metadata['image_id'].map(image_path.get)
#upload data into dataset with resize 254,254
metadata['image'] = metadata['path'].map(lambda x: np.asarray(Image.open(x).resize((254,254))))
n_samples = 5 # number of samples for plotting
# Plotting
fig, m_axs = plt.subplots(7, n_samples, figsize = (4*n_samples, 3*7))
for n_axs, (type_name, type_rows) in zip(m_axs,
metadata.sort_values(['dx']).groupby('dx')):
n_axs[0].set_title(type_name)
for c_ax, (_, c_row) in zip(n_axs, type_rows.sample(n_samples, random_state=1234).iterrows()):
c_ax.imshow(c_row['image'])
c_ax.axis('off')
metadata['image'].info()
plt.imshow(data[:,:,0])
metadata['image'][0]