-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCombine_SFANC_with_FxNLMS.py
71 lines (60 loc) · 2.87 KB
/
Combine_SFANC_with_FxNLMS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import torch
import numpy as np
import torch.nn as nn
import torch.optim as optim
import scipy.signal as signal
import scipy.io as sio
#------------------------------------------------------------------------------
# Class: FxNLMS algorithm with initial coefficients determined by SFANC
#------------------------------------------------------------------------------
class FxNLMS():
def __init__(self, Len, Ws):
self.Wc = torch.tensor(Ws, requires_grad=True) # Ws: initial coefficients determined by SFANC
self.Xd = torch.zeros(1, Len, dtype=torch.float)
def feedforward(self,Xf):
self.Xd = torch.roll(self.Xd,1,1)
self.Xd[0,0] = Xf
yt = self.Wc @ self.Xd.t()
power = self.Xd @ self.Xd.t() # different from FxLMS
return yt, power
def LossFunction(self, y, d, power):
e = d-y
return e**2/(2*power), e
def _get_coeff_(self):
return self.Wc.detach().numpy()
#----------------------------------------------------------------
# Function: SFANC_FxNLMS
# Description: Using FxNLMS to optimize the control filter, the initial weights come from SFANC
#----------------------------------------------------------------
class SFANC_FxNLMS():
def __init__(self, MAT_FILE, fs):
self.Wc = self.Load_Pretrained_filters_to_tensor(MAT_FILE) # torch.Size([15, 1024])
Len = self.Wc.shape[1]
self.fs = fs
self.Current_Filter = torch.zeros(1, Len, dtype=torch.float)
def noise_cancellation(self, Dis, Fx, filter_index, Stepsize):
Error = []
j = 0
model = FxNLMS(Len=1024, Ws=self.Current_Filter)
optimizer = optim.SGD([model.Wc], lr=Stepsize) # Stepsize is learning_rate
for ii, dis in enumerate(Dis):
y,power = model.feedforward(Fx[ii])
loss,e = model.LossFunction(y,dis,power)
optimizer.zero_grad()
loss.backward()
optimizer.step()
Error.append(e.item())
if (ii + 1) % self.fs == 0:
print(j)
if self.Current_Filter[0].equal(self.Wc[filter_index[j]]) == False:
# if prediction index is changed, change initial weights of FxNLMS
print('change the initial weights of FxNLMS')
self.Current_Filter = self.Wc[filter_index[j]].unsqueeze(0) # torch.Size([1, 1024])
model = FxNLMS(Len=1024, Ws=self.Current_Filter)
optimizer = optim.SGD([model.Wc], lr=Stepsize) # Stepsize is learning_rate
j += 1
return Error
def Load_Pretrained_filters_to_tensor(self, MAT_FILE): # Loading the pre-trained control filter from the mat file
mat_contents = sio.loadmat(MAT_FILE)
Wc_vectors = mat_contents['Wc_v']
return torch.from_numpy(Wc_vectors).type(torch.float)