Skip to content

Python SDK for AI agent monitoring, LLM cost tracking, benchmarking, and more. Integrates with most LLMs and agent frameworks including CrewAI, Langchain, Autogen, AG2, and CamelAI

License

Notifications You must be signed in to change notification settings

AgentOps-AI/agentops

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

Observability and DevTool platform for AI Agents

Twitter Discord Dashboard Documentation Chat with Docs

Dashboard Banner

AgentOps helps developers build, evaluate, and monitor AI agents. From prototype to production.

๐Ÿ“Š Replay Analytics and Debugging Step-by-step agent execution graphs
๐Ÿ’ธ LLM Cost Management Track spend with LLM foundation model providers
๐Ÿงช Agent Benchmarking Test your agents against 1,000+ evals
๐Ÿ” Compliance and Security Detect common prompt injection and data exfiltration exploits
๐Ÿค Framework Integrations Native Integrations with CrewAI, AG2(AutoGen), Camel AI, & LangChain

Quick Start โŒจ๏ธ

pip install agentops

Session replays in 2 lines of code

Initialize the AgentOps client and automatically get analytics on all your LLM calls.

Get an API key

import agentops

# Beginning of your program (i.e. main.py, __init__.py)
agentops.init( < INSERT YOUR API KEY HERE >)

...

# End of program
agentops.end_session('Success')

All your sessions can be viewed on the AgentOps dashboard

Agent Debugging Agent Metadata Chat Viewer Event Graphs
Session Replays Session Replays
Summary Analytics Summary Analytics Summary Analytics Charts

First class Developer Experience

Add powerful observability to your agents, tools, and functions with as little code as possible: one line at a time.
Refer to our documentation

# Automatically associate all Events with the agent that originated them
from agentops import track_agent

@track_agent(name='SomeCustomName')
class MyAgent:
  ...
# Automatically create ToolEvents for tools that agents will use
from agentops import record_tool

@record_tool('SampleToolName')
def sample_tool(...):
  ...
# Automatically create ActionEvents for other functions.
from agentops import record_action

@agentops.record_action('sample function being record')
def sample_function(...):
  ...
# Manually record any other Events
from agentops import record, ActionEvent

record(ActionEvent("received_user_input"))

Integrations ๐Ÿฆพ

CrewAI ๐Ÿ›ถ

Build Crew agents with observability with only 2 lines of code. Simply set an AGENTOPS_API_KEY in your environment, and your crews will get automatic monitoring on the AgentOps dashboard.

pip install 'crewai[agentops]'

AG2 ๐Ÿค–

With only two lines of code, add full observability and monitoring to AG2 (formerly AutoGen) agents. Set an AGENTOPS_API_KEY in your environment and call agentops.init()

Camel AI ๐Ÿช

Track and analyze CAMEL agents with full observability. Set an AGENTOPS_API_KEY in your environment and initialize AgentOps to get started.

Installation
pip install "camel-ai[all]==0.2.11"
pip install agentops
import os
import agentops
from camel.agents import ChatAgent
from camel.messages import BaseMessage
from camel.models import ModelFactory
from camel.types import ModelPlatformType, ModelType

# Initialize AgentOps
agentops.init(os.getenv("AGENTOPS_API_KEY"), default_tags=["CAMEL Example"])

# Import toolkits after AgentOps init for tracking
from camel.toolkits import SearchToolkit

# Set up the agent with search tools
sys_msg = BaseMessage.make_assistant_message(
    role_name='Tools calling operator',
    content='You are a helpful assistant'
)

# Configure tools and model
tools = [*SearchToolkit().get_tools()]
model = ModelFactory.create(
    model_platform=ModelPlatformType.OPENAI,
    model_type=ModelType.GPT_4O_MINI,
)

# Create and run the agent
camel_agent = ChatAgent(
    system_message=sys_msg,
    model=model,
    tools=tools,
)

response = camel_agent.step("What is AgentOps?")
print(response)

agentops.end_session("Success")

Check out our Camel integration guide for more examples including multi-agent scenarios.

Langchain ๐Ÿฆœ๐Ÿ”—

AgentOps works seamlessly with applications built using Langchain. To use the handler, install Langchain as an optional dependency:

Installation
pip install agentops[langchain]

To use the handler, import and set

import os
from langchain.chat_models import ChatOpenAI
from langchain.agents import initialize_agent, AgentType
from agentops.partners.langchain_callback_handler import LangchainCallbackHandler

AGENTOPS_API_KEY = os.environ['AGENTOPS_API_KEY']
handler = LangchainCallbackHandler(api_key=AGENTOPS_API_KEY, tags=['Langchain Example'])

llm = ChatOpenAI(openai_api_key=OPENAI_API_KEY,
                 callbacks=[handler],
                 model='gpt-3.5-turbo')

agent = initialize_agent(tools,
                         llm,
                         agent=AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION,
                         verbose=True,
                         callbacks=[handler], # You must pass in a callback handler to record your agent
                         handle_parsing_errors=True)

Check out the Langchain Examples Notebook for more details including Async handlers.

Cohere โŒจ๏ธ

First class support for Cohere(>=5.4.0). This is a living integration, should you need any added functionality please message us on Discord!

Installation
pip install cohere
import cohere
import agentops

# Beginning of program's code (i.e. main.py, __init__.py)
agentops.init(<INSERT YOUR API KEY HERE>)
co = cohere.Client()

chat = co.chat(
    message="Is it pronounced ceaux-hear or co-hehray?"
)

print(chat)

agentops.end_session('Success')
import cohere
import agentops

# Beginning of program's code (i.e. main.py, __init__.py)
agentops.init(<INSERT YOUR API KEY HERE>)

co = cohere.Client()

stream = co.chat_stream(
    message="Write me a haiku about the synergies between Cohere and AgentOps"
)

for event in stream:
    if event.event_type == "text-generation":
        print(event.text, end='')

agentops.end_session('Success')

Anthropic ๏นจ

Track agents built with the Anthropic Python SDK (>=0.32.0).

Installation
pip install anthropic
import anthropic
import agentops

# Beginning of program's code (i.e. main.py, __init__.py)
agentops.init(<INSERT YOUR API KEY HERE>)

client = anthropic.Anthropic(
    # This is the default and can be omitted
    api_key=os.environ.get("ANTHROPIC_API_KEY"),
)

message = client.messages.create(
        max_tokens=1024,
        messages=[
            {
                "role": "user",
                "content": "Tell me a cool fact about AgentOps",
            }
        ],
        model="claude-3-opus-20240229",
    )
print(message.content)

agentops.end_session('Success')

Streaming

import anthropic
import agentops

# Beginning of program's code (i.e. main.py, __init__.py)
agentops.init(<INSERT YOUR API KEY HERE>)

client = anthropic.Anthropic(
    # This is the default and can be omitted
    api_key=os.environ.get("ANTHROPIC_API_KEY"),
)

stream = client.messages.create(
    max_tokens=1024,
    model="claude-3-opus-20240229",
    messages=[
        {
            "role": "user",
            "content": "Tell me something cool about streaming agents",
        }
    ],
    stream=True,
)

response = ""
for event in stream:
    if event.type == "content_block_delta":
        response += event.delta.text
    elif event.type == "message_stop":
        print("\n")
        print(response)
        print("\n")

Async

import asyncio
from anthropic import AsyncAnthropic

client = AsyncAnthropic(
    # This is the default and can be omitted
    api_key=os.environ.get("ANTHROPIC_API_KEY"),
)


async def main() -> None:
    message = await client.messages.create(
        max_tokens=1024,
        messages=[
            {
                "role": "user",
                "content": "Tell me something interesting about async agents",
            }
        ],
        model="claude-3-opus-20240229",
    )
    print(message.content)


await main()

Mistral ใ€ฝ๏ธ

Track agents built with the Anthropic Python SDK (>=0.32.0).

Installation
pip install mistralai

Sync

from mistralai import Mistral
import agentops

# Beginning of program's code (i.e. main.py, __init__.py)
agentops.init(<INSERT YOUR API KEY HERE>)

client = Mistral(
    # This is the default and can be omitted
    api_key=os.environ.get("MISTRAL_API_KEY"),
)

message = client.chat.complete(
        messages=[
            {
                "role": "user",
                "content": "Tell me a cool fact about AgentOps",
            }
        ],
        model="open-mistral-nemo",
    )
print(message.choices[0].message.content)

agentops.end_session('Success')

Streaming

from mistralai import Mistral
import agentops

# Beginning of program's code (i.e. main.py, __init__.py)
agentops.init(<INSERT YOUR API KEY HERE>)

client = Mistral(
    # This is the default and can be omitted
    api_key=os.environ.get("MISTRAL_API_KEY"),
)

message = client.chat.stream(
        messages=[
            {
                "role": "user",
                "content": "Tell me something cool about streaming agents",
            }
        ],
        model="open-mistral-nemo",
    )

response = ""
for event in message:
    if event.data.choices[0].finish_reason == "stop":
        print("\n")
        print(response)
        print("\n")
    else:
        response += event.text

agentops.end_session('Success')

Async

import asyncio
from mistralai import Mistral

client = Mistral(
    # This is the default and can be omitted
    api_key=os.environ.get("MISTRAL_API_KEY"),
)


async def main() -> None:
    message = await client.chat.complete_async(
        messages=[
            {
                "role": "user",
                "content": "Tell me something interesting about async agents",
            }
        ],
        model="open-mistral-nemo",
    )
    print(message.choices[0].message.content)


await main()

Async Streaming

import asyncio
from mistralai import Mistral

client = Mistral(
    # This is the default and can be omitted
    api_key=os.environ.get("MISTRAL_API_KEY"),
)


async def main() -> None:
    message = await client.chat.stream_async(
        messages=[
            {
                "role": "user",
                "content": "Tell me something interesting about async streaming agents",
            }
        ],
        model="open-mistral-nemo",
    )

    response = ""
    async for event in message:
        if event.data.choices[0].finish_reason == "stop":
            print("\n")
            print(response)
            print("\n")
        else:
            response += event.text


await main()

CamelAI ๏นจ

Track agents built with the CamelAI Python SDK (>=0.32.0).

Installation
pip install camel-ai[all]
pip install agentops
#Import Dependencies
import agentops
import os
from getpass import getpass
from dotenv import load_dotenv

#Set Keys
load_dotenv()
openai_api_key = os.getenv("OPENAI_API_KEY") or "<your openai key here>"
agentops_api_key = os.getenv("AGENTOPS_API_KEY") or "<your agentops key here>"

You can find usage examples here!.

LiteLLM ๐Ÿš…

AgentOps provides support for LiteLLM(>=1.3.1), allowing you to call 100+ LLMs using the same Input/Output Format.

Installation
pip install litellm
# Do not use LiteLLM like this
# from litellm import completion
# ...
# response = completion(model="claude-3", messages=messages)

# Use LiteLLM like this
import litellm
...
response = litellm.completion(model="claude-3", messages=messages)
# or
response = await litellm.acompletion(model="claude-3", messages=messages)

LlamaIndex ๐Ÿฆ™

AgentOps works seamlessly with applications built using LlamaIndex, a framework for building context-augmented generative AI applications with LLMs.

Installation
pip install llama-index-instrumentation-agentops

To use the handler, import and set

from llama_index.core import set_global_handler

# NOTE: Feel free to set your AgentOps environment variables (e.g., 'AGENTOPS_API_KEY')
# as outlined in the AgentOps documentation, or pass the equivalent keyword arguments
# anticipated by AgentOps' AOClient as **eval_params in set_global_handler.

set_global_handler("agentops")

Check out the LlamaIndex docs for more details.

Llama Stack ๐Ÿฆ™๐Ÿฅž

AgentOps provides support for Llama Stack Python Client(>=0.0.53), allowing you to monitor your Agentic applications.

SwarmZero AI ๐Ÿ

Track and analyze SwarmZero agents with full observability. Set an AGENTOPS_API_KEY in your environment and initialize AgentOps to get started.

Installation
pip install swarmzero
pip install agentops
from dotenv import load_dotenv
load_dotenv()

import agentops
agentops.init(<INSERT YOUR API KEY HERE>)

from swarmzero import Agent, Swarm
# ...

Time travel debugging ๐Ÿ”ฎ

Time Travel Banner

Try it out!

Agent Arena ๐ŸฅŠ

(coming soon!)

Evaluations Roadmap ๐Ÿงญ

Platform Dashboard Evals
โœ… Python SDK โœ… Multi-session and Cross-session metrics โœ… Custom eval metrics
๐Ÿšง Evaluation builder API โœ… Custom event tag trackingย  ๐Ÿ”œ Agent scorecards
โœ… Javascript/Typescript SDK โœ… Session replays ๐Ÿ”œ Evaluation playground + leaderboard

Debugging Roadmap ๐Ÿงญ

Performance testing Environments LLM Testing Reasoning and execution testing
โœ… Event latency analysis ๐Ÿ”œ Non-stationary environment testing ๐Ÿ”œ LLM non-deterministic function detection ๐Ÿšง Infinite loops and recursive thought detection
โœ… Agent workflow execution pricing ๐Ÿ”œ Multi-modal environments ๐Ÿšง Token limit overflow flags ๐Ÿ”œ Faulty reasoning detection
๐Ÿšง Success validators (external) ๐Ÿ”œ Execution containers ๐Ÿ”œ Context limit overflow flags ๐Ÿ”œ Generative code validators
๐Ÿ”œ Agent controllers/skill tests โœ… Honeypot and prompt injection detection (PromptArmor) ๐Ÿ”œ API bill tracking ๐Ÿ”œ Error breakpoint analysis
๐Ÿ”œ Information context constraint testing ๐Ÿ”œ Anti-agent roadblocks (i.e. Captchas) ๐Ÿ”œ CI/CD integration checks
๐Ÿ”œ Regression testing ๐Ÿ”œ Multi-agent framework visualization

Why AgentOps? ๐Ÿค”

Without the right tools, AI agents are slow, expensive, and unreliable. Our mission is to bring your agent from prototype to production. Here's why AgentOps stands out:

  • Comprehensive Observability: Track your AI agents' performance, user interactions, and API usage.
  • Real-Time Monitoring: Get instant insights with session replays, metrics, and live monitoring tools.
  • Cost Control: Monitor and manage your spend on LLM and API calls.
  • Failure Detection: Quickly identify and respond to agent failures and multi-agent interaction issues.
  • Tool Usage Statistics: Understand how your agents utilize external tools with detailed analytics.
  • Session-Wide Metrics: Gain a holistic view of your agents' sessions with comprehensive statistics.

AgentOps is designed to make agent observability, testing, and monitoring easy.

Star History

Check out our growth in the community:

Logo

Popular projects using AgentOps

Repository Stars
ย  geekan / MetaGPT 42787
ย  run-llama / llama_index 34446
ย  crewAIInc / crewAI 18287
ย  camel-ai / camel 5166
ย  superagent-ai / superagent 5050
ย  iyaja / llama-fs 4713
ย  BasedHardware / Omi 2723
ย  MervinPraison / PraisonAI 2007
ย  AgentOps-AI / Jaiqu 272
ย  swarmzero / swarmzero 195
ย  strnad / CrewAI-Studio 134
ย  alejandro-ao / exa-crewai 55
ย  tonykipkemboi / youtube_yapper_trapper 47
ย  sethcoast / cover-letter-builder 27
ย  bhancockio / chatgpt4o-analysis 19
ย  breakstring / Agentic_Story_Book_Workflow 14
ย  MULTI-ON / multion-python 13

Generated using github-dependents-info, by Nicolas Vuillamy