SETINet is a state-of-the-art framework for analyzing astronomical data to detect potential technosignatures of extraterrestrial intelligence. This project implements a deep learning approach to process and analyze radio telescope data, utilizing convolutional neural networks optimized for signal detection in spectral data.
- 🔭 Automated data collection from multiple radio telescope sources
- 🤖 Deep learning-based signal detection and classification
- 📊 Real-time data processing and analysis pipeline
- 📈 Comprehensive visualization and monitoring tools
- 🔍 Advanced signal processing and noise reduction
- 💾 Efficient data management and model checkpointing
graph TD
subgraph Data Pipeline
A[Astronomical Data Sources] --> B[DataFetcher]
B --> C[Raw Data Storage]
C --> D[SignalProcessor]
D --> E[Processed Data]
end
subgraph ML Pipeline
E --> F[SETIDataset]
F --> G[DataLoader]
G --> H[SETINet Model]
end
subgraph Training Pipeline
H --> I[Trainer]
I --> J[Model Checkpoints]
I --> K[TensorBoard Logs]
I --> L[Training Metrics]
end
subgraph Model Architecture
M[Input Layer] --> N[Conv2D + ReLU + MaxPool]
N --> O[Conv2D + ReLU + MaxPool]
O --> P[Conv2D + ReLU + MaxPool]
P --> Q[Flatten]
Q --> R[Dense + ReLU]
R --> S[Dropout]
S --> T[Output Layer]
end
graph TD
A[Astronomical Data Sources] --> B[DataFetcher]
B --> C[Raw Data Storage]
C --> D[SignalProcessor]
D --> E[Processed Data]
The SETINet model employs a deep convolutional neural network architecture optimized for spectral data analysis:
Input Layer (1 x 1024 x 1024)
│
▼
Conv2D(32) + ReLU + MaxPool
│
▼
Conv2D(64) + ReLU + MaxPool
│
▼
Conv2D(128) + ReLU + MaxPool
│
▼
Flatten
│
▼
Dense(512) + ReLU
│
▼
Dropout(0.5)
│
▼
Output Layer (2)
- Python 3.8+
- CUDA-capable GPU (recommended)
- 16GB+ RAM
- Clone the repository:
git clone https://github.com/Agora-Lab-AI/SETINet.git
cd SETINet
- Create and activate a virtual environment:
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
- Install dependencies:
pip install -r requirements.txt
python main.py
We welcome contributions! Please see our CONTRIBUTING.md for guidelines.
If you use SETINet in your research, please cite our paper:
@article{setinet2024,
title={SETINet: Deep Learning Framework for Extraterrestrial Signal Detection},
author={Kye Gomez},
journal={arXiv preprint arXiv:2024.xxxxx},
year={2024}
}
This project is licensed under the MIT License - see the LICENSE file for details.
- Breakthrough Listen Initiative for providing open-source data
- Green Bank Observatory for radio telescope data access
- The SETI research community for valuable feedback and contributions
- 🌐 Website: https://agoralab.ai
- 🐦 Twitter: @AgoraLabAI
- Twitter: @kyegomez
- Email: kye@swarms.world
Book a call with here for real-time assistance:
⭐ Star us on GitHub if this project helped you!