forked from mhd-medfa/Crowd-Copter
-
Notifications
You must be signed in to change notification settings - Fork 0
/
lk_track.py
121 lines (103 loc) · 3.88 KB
/
lk_track.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
#!/usr/bin/env python
'''
Lucas-Kanade tracker
====================
Lucas-Kanade sparse optical flow demo. Uses goodFeaturesToTrack
for track initialization and back-tracking for match verification
between frames.
Usage
-----
lk_track.py [<video_source>]
Keys
----
ESC - exit
'''
# Python 2/3 compatibility
from __future__ import print_function
import numpy as np
import cv2
import video
from common import anorm2, draw_str
from time import clock
lk_params = dict( winSize = (20,20),
maxLevel = 2,
criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
feature_params = dict( maxCorners = 500,
qualityLevel = 0.3,
minDistance = 7,
blockSize = 5 )
class App:
def __init__(self, video_src):
self.track_len =10
self.detect_interval = 5
self.tracks = []
self.tracks_and_t = []
self.cam = video.create_capture(video_src)
self.frame_idx = 0
def run(self):
while True:
ret, frame = self.cam.read()
if frame is not None:
frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
frame_gray = cv2.equalizeHist(frame_gray)
vis = frame.copy()
vis1 = frame.copy()
else:
return self.tracks_and_t, (self.frame_idx) ,vis1
if len(self.tracks) > 0:
img0, img1 = self.prev_gray, frame_gray
p0 = np.float32([tr[-1] for tr in self.tracks]).reshape(-1, 1, 2)
p1, st, err = cv2.calcOpticalFlowPyrLK(img0, img1, p0, None, **lk_params)
p0r, st, err = cv2.calcOpticalFlowPyrLK(img1, img0, p1, None, **lk_params)
d = abs(p0-p0r).reshape(-1, 2).max(-1)
good = d < 1
new_tracks = []
new_track_and_t=[]
for tr_and_t,tr, (x, y), good_flag in zip(self.tracks_and_t,self.tracks, p1.reshape(-1, 2), good):
if not good_flag:
continue
tmpList=list((x,y))
tmpList.append(self.frame_idx)
tmpTuple=tuple(tmpList)
tr_and_t.append(tmpTuple)
tr.append((x, y))
if len(tr) > self.track_len:
del tr_and_t[0]
del tr[0]
new_track_and_t.append(tr_and_t)
new_tracks.append(tr)
cv2.circle(vis, (x, y), 2, (0, 255, 0), -1)
self.tracks_and_t = new_track_and_t
self.tracks = new_tracks
cv2.polylines(vis, [np.int32(tr) for tr in self.tracks], False, (0, 255, 0))
draw_str(vis, (20, 20), 'track count: %d' % len(self.tracks))
if self.frame_idx % self.detect_interval == 0:
mask = np.zeros_like(frame_gray)
mask[:] = 255
for x, y in [np.int32(tr[-1]) for tr in self.tracks]:
cv2.circle(mask, (x, y), 5, 0, -1)
p = cv2.goodFeaturesToTrack(frame_gray, mask = mask, **feature_params)
if p is not None:
for x, y in np.float32(p).reshape(-1, 2):
#look_at_this=self.frame_idx
self.tracks.append([(x, y)])
self.tracks_and_t.append([(x, y,self.frame_idx)])
self.frame_idx += 1
self.prev_gray = frame_gray
cv2.imshow('lk_track', vis)
ch = cv2.waitKey(1)
if ch == 27:
break
def FindTracks():
import sys
try:
video_src = sys.argv[1]
except:
video_src = 0
print(__doc__)
#Tajectories=App(video_src).run()
cv2.destroyAllWindows()
return App(video_src).run()
#if __name__ == '__main__':
# main()
#FindTracks()