-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSesion7.py
137 lines (110 loc) · 3.65 KB
/
Sesion7.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# -*- coding: utf-8 -*-
"""
Created on Wed Mar 27 15:10:11 2019
@author: UO270318
"""
################### DERIVADAS #########################
import numpy as np
import matplotlib.pyplot as plt
a=0
b=1
h=0.1
h2=0.01
f= lambda x: np.exp(x)
df= lambda x: np.exp(x)
xp=np.arange(a,b+h,h)
num_puntos=1/h +1
### DERIVADA PROGRESIVA ###
def df_p(f,x0,h):
return (f(x0+h)-f(x0))/h
### DERIVADA REGRESIVA ###
def df_r(f,x0,h):
return (f(x0)-f(x0-h))/h
### DERIVADA NUMERICA CENTRADA ###
def df_c(f,x0,h):
return ((df_p(f,x0,h)+df_r(f,x0,h))/2)
###################### EJERCICIO 1 #######################
### CON H=01 ###
plt.plot(xp[1:-1],df(xp[1:-1]),label='derivada exacta') #evaluar de 0.1 a 0.9
plt.plot(xp[1:-1],df_p(f,xp[1:-1],h),label='derivada progresiva')
plt.plot(xp[1:-1],df_r(f,xp[1:-1],h),label='derivada regresiva')
plt.plot(xp[1:-1],df_c(f,xp[1:-1],h),label='derivada centrada')
plt.legend()
plt.title('Derivada con h=0.1')
plt.show()
errorP=abs(df(xp[1:-1])-df_p(f,xp[1:-1],h))
errorR=abs(df(xp[1:-1])-df_r(f,xp[1:-1],h))
errorC=abs(df(xp[1:-1])-df_c(f,xp[1:-1],h))
plt.plot(xp[1:-1],errorP,label='derivada progresiva')
plt.plot(xp[1:-1],errorR,label='derivada regresiva')
plt.plot(xp[1:-1],errorC,label='derivada centrada')
plt.legend()
plt.title('Error con h=0.1')
plt.show()
### CON H=0.01 ###
plt.plot(xp[1:-1],df(xp[1:-1]),label='derivada exacta') #evaluar de 0.1 a 0.9
plt.plot(xp[1:-1],df_p(f,xp[1:-1],h2),label='derivada progresiva')
plt.plot(xp[1:-1],df_r(f,xp[1:-1],h2),label='derivada regresiva')
plt.plot(xp[1:-1],df_c(f,xp[1:-1],h2),label='derivada centrada')
plt.legend()
plt.title('Derivada con h=0.01')
plt.show()
errorP2=abs(df(xp[1:-1])-df_p(f,xp[1:-1],h2))
errorR2=abs(df(xp[1:-1])-df_r(f,xp[1:-1],h2))
errorC2=abs(df(xp[1:-1])-df_c(f,xp[1:-1],h2))
plt.plot(xp[1:-1],errorP2,label='derivada progresiva')
plt.plot(xp[1:-1],errorR2,label='derivada regresiva')
plt.plot(xp[1:-1],errorC2,label='derivada centrada')
plt.legend()
plt.title('Error con h=0.01')
plt.show()
### ERROR RELATIVO ###
errorRelP= np.linalg.norm(df(xp[1:-1])-df_p(f,xp[1:-1],h))/np.linalg.norm(df(xp[1:-1]))
errorRelR= np.linalg.norm(df(xp[1:-1])-df_r(f,xp[1:-1],h))/np.linalg.norm(df(xp[1:-1]))
errorRelC= np.linalg.norm(df(xp[1:-1])-df_c(f,xp[1:-1],h))/np.linalg.norm(df(xp[1:-1]))
print('relativa progresiva',errorRelP)
print('relativa regresiva',errorRelR)
print('relativa centrada',errorRelC)
###################### EJERCICIO 2 #######################
def dfOrden2_p(f,x0,h):
return (-3*f(x0)+4*f(x0+h)-f(x0+2*h))/(2*h)
def dfOrden2_r(f,x2,h):
return (f(x2-2*h)-4*f(x2-h)+3*f(x2))/(2*h)
f= lambda x: 1/x
df= lambda x: -1/x**2
a=0.2
b=1.2
h=0.01
xp=np.arange(a,b+h,h)
dfa=np.zeros(len(xp))
dfa[0]=df_p(f,xp[0],h)
dfa[-1]=df_r(f,xp[-1],h)
dfa[1:-1]=df_c(f,xp[1:-1],h)
plt.plot(xp,dfa,label='derivada aproximada')
plt.legend()
plt.show()
dfb=np.zeros(len(xp))
dfb[0]=dfOrden2_p(f,xp[0],h)
dfb[-1]=dfOrden2_r(f,xp[-1],h)
dfb[1:-1]=df_c(f,xp[1:-1],h)
plt.plot(xp,dfa,label='derivada aproximada')
plt.legend()
plt.show()
Ea= np.linalg.norm(df(xp)-dfa)/np.linalg.norm(df(xp))
Eb= np.linalg.norm(df(xp)-dfb)/np.linalg.norm(df(xp))
print('relativa global con procedimiento a',Ea)
print('relativa',Eb)
###################### EJERCICIO 3 #######################
def D2f(f,x1,h):
return (f(x1-h)-2*f(x1)+f(x1+h))/(h**2)
f=lambda x: np.sin(2*np.pi*x)
d2f=lambda x: -4*np.pi**2*np.sin(2*np.pi*x)
a=0;b=1;h=0.01
xp=np.arange(a,b+h,h)
d2_f=D2f(f,xp[1:-1],h)
plt.plot(xp[1:-1],d2f(xp[1:-1]),label='derivada 2exacta')
plt.plot(xp[1:-1],d2_f,label='derivada 2 numerica')
plt.legend()
plt.show()
Ec= np.linalg.norm(d2f(xp[1:-1])-d2_f)/np.linalg.norm(d2f(xp[1:-1]))
print('Error relativo global de D2f es',Ec)