forked from graphcore/examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
args.py
188 lines (165 loc) · 10.3 KB
/
args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# Copyright (c) 2021 Graphcore Ltd. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import sys
import yaml
config_file = "./configs.yml"
def str_to_bool(value):
if isinstance(value, bool) or value is None:
return value
if value.lower() in {'false', 'f', '0', 'no', 'n'}:
return False
elif value.lower() in {'true', 't', '1', 'yes', 'y'}:
return True
raise argparse.ArgumentTypeError(f'{value} is not a valid boolean value')
def parse_args(args=None):
pparser = argparse.ArgumentParser("ViT Configuration name", add_help=False)
pparser.add_argument("--config",
type=str,
help="Configuration Name",
required=True)
pargs, remaining_args = pparser.parse_known_args(args=args)
config_name = pargs.config
parser = argparse.ArgumentParser(
"Poptorch ViT",
add_help=True,
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
# Execution
parser.add_argument("--micro-batch-size", type=int, help="Set the micro batch-size")
parser.add_argument("--training-steps", type=int, help="Number of training steps")
parser.add_argument("--batches-per-step", type=int, help="Number of batches per training step")
parser.add_argument("--replication-factor", type=int, help="Number of replicas")
parser.add_argument("--gradient-accumulation", type=int,
help="Number of gradients to accumulate before updating the weights")
parser.add_argument("--stochastic-rounding", type=str_to_bool,
nargs="?", const=True, default=True,
help="enable stochastic rounding")
parser.add_argument("--recompute-checkpoint-every-layer", type=str_to_bool,
nargs="?", const=True, default=False,
help="This controls how recomputation is handled in pipelining. "
"If True the output of each encoder layer will be stashed keeping "
"the max liveness of activations to be at most one layer. "
"However, the stash size scales with the number of pipeline stages "
"so this may not always be beneficial. "
"The added stash + code could be greater than "
"the reduction in temporary memory.")
parser.add_argument("--ipus-per-replica", type=int,
help="Number of IPUs required by each replica")
parser.add_argument("--matmul-proportion", type=float, nargs="+",
help="Relative IPU memory proportion size allocated for matmul")
parser.add_argument("--random-seed", type=int, help="Seed for RNG")
parser.add_argument('--precision', choices=['16.16', '16.32', '32.32'], default='16.16',
help="Precision of Ops(weights/activations/gradients) and "
"Master data types: 16.16, 16.32, 32.32")
parser.add_argument('--normalization-location', choices=['host', 'ipu', 'none'], default='host',
help='Location of the data normalization')
parser.add_argument("--layers-per-ipu", type=int, nargs="+",
help="number of layers placed on each IPU")
parser.add_argument("--prefetch-depth", type=int, help="Prefetch buffering depth")
parser.add_argument("--enable-rts", type=str_to_bool, nargs="?", const=True, default=False,
help="Enabling RTS")
parser.add_argument("--optimizer-state-offchip", type=str_to_bool, nargs="?", const=True, default=True,
help="Set the tensor storage location for optimizer state to be offchip.")
# Optimizer
parser.add_argument("--optimizer", type=str, choices=['SGD', ],
help="optimizer to use for the training")
parser.add_argument("--learning-rate", type=float,
help="Learning rate value for constant schedule, "
"maximum for linear schedule.")
parser.add_argument("--lr-schedule", type=str, choices=["constant", "linear", "cosine"],
help="Type of learning rate schedule. "
"--learning-rate will be used as the max value")
parser.add_argument("--loss-scaling", type=float,
help="Loss scaling factor (recommend using powers of 2)")
parser.add_argument("--weight-decay", type=float, help="Set the weight decay")
parser.add_argument("--momentum", type=float, help="The momentum factor of SGD optimizer")
parser.add_argument("--warmup-steps", type=int, help="Number of warmup steps")
parser.add_argument("--enable-half-first-order-momentum", type=str_to_bool, nargs="?", const=True, default=False,
help="Use float16 for the first order momentum in the optimizer.")
# Model
parser.add_argument("--vocab-size", type=int, help="Set the size of the vocabulary")
parser.add_argument("--hidden-size", type=int,
help="The size of the hidden state of the transformer layers")
parser.add_argument("--num-hidden-layers", type=int, help="The number of transformer layers")
parser.add_argument("--num-attention-heads", type=int,
help="Set the number of heads in self attention")
parser.add_argument("--mlp-dim", type=int, help="The size of mlp dimention")
parser.add_argument("--hidden-dropout-prob", type=float, help="MLP dropout probability")
parser.add_argument("--patches-size", type=float, nargs="+", help="The size of image tokens")
parser.add_argument("--num-labels", type=int, help="The number of classes")
parser.add_argument("--attention-probs-dropout-prob", type=float, help="Attention dropout probability")
parser.add_argument("--layer-norm-eps", type=float, help="LayerNorm epsilon")
# Dataset
parser.add_argument('--dataset', choices=['cifar10', 'imagenet', 'synthetic', 'generated'],
default='cifar10', help="Choose data")
parser.add_argument("--dataset-path", type=str, help="Input data files")
parser.add_argument("--synthetic-data", type=str_to_bool, nargs="?", const=True, default=False,
help="No Host/IPU I/O, random data created on device")
# Misc
parser.add_argument("--dataloader-workers", type=int, help="The number of dataloader workers")
parser.add_argument("--custom-ops", type=str_to_bool, nargs="?", const=True, default=True,
help="Enable custom ops")
parser.add_argument("--wandb", type=str_to_bool, nargs="?", const=True, default=False,
help="Enabling logging to Weights and Biases")
parser.add_argument("--wandb-project-name", type=str, default="torch-vit",
help="wandb project name")
parser.add_argument("--executable-cache-dir", type=str, default="",
help="Directory where Poplar executables are cached. If set, recompilation of identical graphs can be avoided. "
"Required for both saving and loading executables.")
parser.add_argument("--profile-dir", type=str, help="Directory for profiling results")
# Checkpointing
parser.add_argument("--checkpoint-output-dir", type=str, default="",
help="Directory where checkpoints will be saved and restored from."
"This can be either an absolute or relative path. If this is "
"not specified, only end of run checkpoint is saved in an automatically "
"generated directory at the root of this project. Specifying directory is"
"recommended to keep track of checkpoints.")
parser.add_argument("--checkpoint-steps", type=int, default=100,
help="Option to checkpoint model after n steps.")
parser.add_argument("--resume-training-from-checkpoint", type=str_to_bool, nargs="?", const=True, default=False,
help="Restore both the model checkpoint and training state in order to resume a training run.")
parser.add_argument("--pretrained-checkpoint", type=str, default="",
help="Checkpoint to be retrieved for further training. This can"
"be either an absolute or relative path to the checkpoint file.")
# This is here only for the help message
parser.add_argument("--config", type=str, help="Configuration name")
# Load the yaml
yaml_args = dict()
if config_name is not None:
with open(config_file, "r") as f:
try:
yaml_args.update(**yaml.safe_load(f)[config_name])
except yaml.YAMLError as exc:
print(exc)
sys.exit(1)
# Check the yaml args are valid
known_args = set(vars(parser.parse_args("")))
unknown_args = set(yaml_args) - known_args
if unknown_args:
print(f" Warning: Unknown arg(s) in config file: {unknown_args}")
parser.set_defaults(**yaml_args)
args = parser.parse_args(remaining_args)
# Expand matmul_proportion input into list representation
if isinstance(args.matmul_proportion, float):
args.matmul_proportion = [args.matmul_proportion] * args.ipus_per_replica
if len(args.matmul_proportion) != args.ipus_per_replica:
if len(args.matmul_proportion) == 1:
args.matmul_proportion = args.matmul_proportion * args.ipus_per_replica
else:
raise ValueError(f"Length of matmul_proportion doesn't match ipus_per_replica: "
f"{args.matmul_proportion} vs {args.ipus_per_replica}")
args.global_batch_size = args.replication_factor * args.gradient_accumulation * args.micro_batch_size
args.samples_per_step = args.global_batch_size * args.batches_per_step
args.config = config_name
return args