-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path5-rag-dspy-optimizer.py
executable file
·314 lines (248 loc) · 9.5 KB
/
5-rag-dspy-optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
#####################
# Imports
#####################
import os
from langchain.text_splitter import RecursiveCharacterTextSplitter
import dspy
from dspy.teleprompt import BootstrapFewShot
from dspy.evaluate.evaluate import Evaluate
import chromadb
from dspy.retrieve.chromadb_rm import ChromadbRM
from chromadb.utils.embedding_functions import OpenAIEmbeddingFunction
#####################
# Constants
#####################
BOOK_PATH = "books/back-to-the-future-script.txt"
BOOK_NAME = "Back to the Future"
COLLECTION_NAME = BOOK_NAME.lower().replace(" ", "-")
VECTOR_STORE = "./vector-store-dspy"
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
#####################
# ChromaDB setup
#####################
chroma_client = chromadb.PersistentClient(path=VECTOR_STORE)
embedding_function = OpenAIEmbeddingFunction(
api_key=OPENAI_API_KEY, model_name="text-embedding-3-small"
)
collection = chroma_client.get_or_create_collection(
name=COLLECTION_NAME, embedding_function=embedding_function
)
collection_documents = collection.get()
if len(collection_documents["ids"]) == 0:
f = open(BOOK_PATH)
text = f.read()
splitter = RecursiveCharacterTextSplitter(chunk_size=600, chunk_overlap=80)
documents = splitter.split_text(text)
ids = [f"id_{i}" for i in range(len(documents))]
metadatas = [{"book_name": BOOK_NAME} for _ in range(len(documents))]
collection.add(
documents=documents,
metadatas=metadatas,
ids=ids,
)
retriever_model = ChromadbRM(
collection_name=COLLECTION_NAME,
persist_directory=VECTOR_STORE,
embedding_function=embedding_function,
k=5,
)
#####################
# DSPy setup
#####################
gpt4_turbo = dspy.OpenAI(model="gpt-4-turbo", max_tokens=300, api_key=OPENAI_API_KEY)
dspy.settings.configure(lm=gpt4_turbo, rm=retriever_model)
#####################
# Signature
#####################
class GenerateAnswer(dspy.Signature):
"""Answer questions with short factoid answers."""
context = dspy.InputField(desc="the content of a book")
question = dspy.InputField()
answer = dspy.OutputField(desc="answer about the content of the book")
#####################
# Build RAG module
#####################
class RAG(dspy.Module):
def __init__(self, num_passages=3):
super().__init__()
self.retrieve = dspy.Retrieve(k=num_passages)
self.generate_answer = dspy.ChainOfThought(GenerateAnswer)
def forward(self, question):
context = self.retrieve(question).passages
prediction = self.generate_answer(context=context, question=question)
return dspy.Prediction(
context=context, answer=prediction.answer, rationale=prediction.rationale
)
#####################
# Data for training, development, and testing
#####################
questions = [
{
"question": "What does Marty ask Doc to pick up on his way to the mall?",
"answer": "Video camera",
},
{"question": "What is Doc's latest experiment involving?", "answer": "A DeLorean"},
{
"question": "What does Doc say about the future's gravitational pull?",
"answer": "He questions if there is a problem with it",
},
{
"question": "What does Doc suggest to get Marty's parents to meet?",
"answer": "They need to be alone together",
},
{
"question": "What era do Marty's parents need to interact in?",
"answer": "The 1950s",
},
{
"question": "What does Doc forget to bring for his journey?",
"answer": "Extra plutonium",
},
{"question": "Who finds Doc according to him?", "answer": "The Libyans"},
{
"question": "What is Doc's reaction when he realizes they have been found?",
"answer": "Tells Marty to run",
},
{
"question": "What vehicle is involved in Doc's experiment?",
"answer": "A DeLorean",
},
{
"question": "What does Marty refer to the situation as when he sees the DeLorean?",
"answer": "Heavy",
},
{"question": "What does Doc record on tape?", "answer": "His historic journey"},
{"question": "Who does Doc say is after them?", "answer": "The Libyans"},
{
"question": "What does Marty call the Libyans in his exclamation?",
"answer": "Bastards",
},
{
"question": "What does Doc instruct to do when the Libyans arrive?",
"answer": "Unroll their fire",
},
{
"question": "What does Marty say when he first sees the DeLorean?",
"answer": "It's a DeLorean, right?",
},
{
"question": "What does Doc assure Marty when he questions the experiment?",
"answer": "All your questions will be answered",
},
{
"question": "What does Doc need to make his time travel experiment work?",
"answer": "Plutonium",
},
{
"question": "What does Marty refer to the weight of the situation?",
"answer": "Heavy",
},
{
"question": "What does Doc plan to document with the video camera?",
"answer": "His experiment",
},
{
"question": "What is the urgency in Doc's voice when he asks Marty to pick up the video camera?",
"answer": "Very important",
},
]
trainset = questions[:10] # 10 examples for training
devset = questions[10:15] # 5 examples for development
testset = questions[15:] # 5 examples for testing
trainset = [
dspy.Example(question=i["question"], answer=i["answer"]).with_inputs("question")
for i in trainset
]
devset = [dspy.Example(question=i["question"]).with_inputs("question") for i in devset]
testset = [
dspy.Example(question=i["question"]).with_inputs("question") for i in testset
]
#####################
# Bulid metric module
#####################
metricLM = dspy.OpenAI(
model="gpt-3.5-turbo", max_tokens=300, model_type="chat", api_key=OPENAI_API_KEY
)
class Assess(dspy.Signature):
"""Assess the quality of an answer to a question."""
context = dspy.InputField(desc="The context for answering the question.")
assessed_question = dspy.InputField(desc="The evaluation criterion.")
assessed_answer = dspy.InputField(desc="The answer to the question.")
assessment_answer = dspy.OutputField(
desc="A rating between 1 and 5. Only output the rating and nothing else.",
prefix="Rating[1-5]:",
)
def llm_metric(gold, pred, trace=None):
question = gold.question
predicted_answer = pred.answer
context = pred.context
print(f"Test Question: {question}")
print(f"Predicted Answer: {predicted_answer}")
detail = "Is the assessed answer detailed?"
faithful = "Is the assessed text grounded in the context? Say no if it includes significant facts not in the context."
overall = f"Please rate how well this answer answers the question, `{question}` based on the context.\n `{predicted_answer}`"
with dspy.context(lm=metricLM):
# context = dspy.Retrieve(k=5)(question).passages
detail = dspy.ChainOfThought(Assess)(
context=context, assessed_question=detail, assessed_answer=predicted_answer
)
faithful = dspy.ChainOfThought(Assess)(
context=context,
assessed_question=faithful,
assessed_answer=predicted_answer,
)
overall = dspy.ChainOfThought(Assess)(
context=context, assessed_question=overall, assessed_answer=predicted_answer
)
print(f"Faithful: {faithful.assessment_answer}")
print(f"Detail: {detail.assessment_answer}")
print(f"Overall: {overall.assessment_answer}")
score = (
float(detail.assessment_answer)
+ float(faithful.assessment_answer)
+ float(overall.assessment_answer)
)
return score / 3.0
#####################
# Evaluate the UNCOMPILED Model
#####################
# Evaluate our RAG Program before it is compiled
evaluate = Evaluate(
devset=devset, num_threads=4, display_progress=True, display_table=5
)
uncompiled_evaluation = evaluate(RAG(), metric=llm_metric)
print(f"## Score for uncompiled: {uncompiled_evaluation}")
# gpt4_turbo.inspect_history(n=1)
#####################
# Evaluate the COMPILED Model
#####################
# Set up a basic optimizer, which will compile our RAG program.
optimizer = BootstrapFewShot(metric=llm_metric)
# Compile!
compiled_rag = optimizer.compile(RAG(), trainset=trainset)
compiled_evaluation = evaluate(compiled_rag, metric=llm_metric)
print(f"## Score for compiled: {compiled_evaluation}")
# gpt4_turbo.inspect_history(n=1)
#### Alternative metric
# # Validation logic: check that the predicted answer is correct.
# # Also check that the retrieved context does actually contain that answer.
# def validate_context_and_answer(example, pred, trace=None):
# answer_EM = dspy.evaluate.answer_exact_match(example, pred)
# answer_PM = dspy.evaluate.answer_passage_match(example, pred)
# return answer_EM and answer_PM
# # Set up a basic teleprompter, which will compile our RAG program.
# teleprompter = BootstrapFewShot(metric=validate_context_and_answer)
#####################
# Compare the UNCOMPILED and COMPILED Models
#####################
for test in testset:
question = test["question"]
uncompiled_result = RAG()(question)
compiled_result = compiled_rag(question)
print(f"Question: {question}")
print(f"Uncompiled Answer: {uncompiled_result.answer}")
print(f"Uncompiled Rationale: {uncompiled_result.rationale}")
print(f"Compiled Answer: {compiled_result.answer}")
print(f"Compiled Rationale: {compiled_result.rationale}")
print("\n")
# gpt4_turbo.inspect_history(n=1)