This project contains the implementation from scratch of neural networks for classification and regression
trained with Stochastic Gradient Descent with back-propagation.
For more detailed information check the report
ML-project
│── src
│ │── network.py
│ │── layer.py
│ │── functions.py
│ │── optimizers.py
│ │── model_selection.py
│ │── weights_initializations.py
│ └── demo.py
└── datasets
│ └── cup
│ │ │── ML-CUP20-TR.csv
│ │ │── ML-CUP20_TS.csv
│ │ │── CUP-DEV-SET.csv
│ │ └── CUP-INTERNAL-TEST.csv
│ └── monks
│ │── monks.names # description file
│ │── monks-x.train # the 'x' is the number of the dataset (1, 2, 3)
│ └── monks-x.test
└── plots
│ │── ensemble # where the plots of the constituent models go
│ └── monks # where the plots of the monks are
└── results # json files with the results of grid searches
└── ensemble_models # json files with the constituent models of the ensemble
Install Python:
sudo apt install python3
Install pip:
sudo apt install --upgrade python3-pip
Install requirements:
python -m pip install --requirement requirements.txt
MONKS demo: open the script to find information and instructions. Then execute it with
cd src/
python demo.py