Skip to content

Commit

Permalink
Fix user-defined phase processing in phasediff() function
Browse files Browse the repository at this point in the history
  • Loading branch information
Alexey Pechnikov committed Aug 30, 2024
1 parent 1425a1b commit 4d7966a
Show file tree
Hide file tree
Showing 3 changed files with 19 additions and 16 deletions.
2 changes: 1 addition & 1 deletion pygmtsar/pygmtsar/Stack_phasediff.py
Original file line number Diff line number Diff line change
Expand Up @@ -471,7 +471,7 @@ def phasediff(self, pairs, data='auto', topo='auto', phase=None, method='nearest
phase_topo = topo

if phase is not None:
phase_real = utils.interp2d_like(phase, grid=data, method=method, kwargs={'fill_value': 'extrapolate'})
phase_real = xr.concat([utils.interp2d_like(phase2d, data, method=method, kwargs={'fill_value': 'extrapolate'}) for phase2d in phase], dim='pair')
else:
phase_real = 0
#phase_real = len(pairs)*[0]
Expand Down
2 changes: 1 addition & 1 deletion pygmtsar/pygmtsar/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@
#
# Licensed under the BSD 3-Clause License (see LICENSE for details)
# ----------------------------------------------------------------------------
__version__ = '2024.8.23'
__version__ = '2024.8.30.post1'

# unified progress indicators
from .tqdm_joblib import tqdm_joblib
Expand Down
31 changes: 17 additions & 14 deletions pygmtsar/pygmtsar/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,7 @@ class utils():
# Xarray's interpolation can be inefficient for large grids;
# this custom function handles the task more effectively.
@staticmethod
def interp2d_like(grid_in, grid_out, method='cubic', **kwargs):
def interp2d_like(data, grid, method='cubic', **kwargs):
import xarray as xr
import dask.array as da
import os
Expand All @@ -47,16 +47,16 @@ def interp2d_like(grid_in, grid_out, method='cubic', **kwargs):
warnings.filterwarnings('ignore', module='dask.core')

# detect dimensions and coordinates for 2D or 3D grid
dims = grid_out.dims[-2:]
dims = grid.dims[-2:]
dim1, dim2 = dims
coords = {dim1: grid_out[dim1], dim2: grid_out[dim2]}
coords = {dim1: grid[dim1], dim2: grid[dim2]}
#print (f'dims: {dims}, coords: {coords}')

# use outer variable grid_in
# use outer variable data
def interpolate_chunk(out_chunk1, out_chunk2, dim1, dim2, method, **kwargs):
d1, d2 = float(grid_in[dim1].diff(dim1)[0]), float(grid_in[dim2].diff(dim2)[0])
d1, d2 = float(data[dim1].diff(dim1)[0]), float(data[dim2].diff(dim2)[0])
#print ('d1, d2', d1, d2)
chunk = grid_in.sel({
chunk = data.sel({
dim1: slice(out_chunk1[0]-2*d1, out_chunk1[-1]+2*d1),
dim2: slice(out_chunk2[0]-2*d2, out_chunk2[-1]+2*d2)
}).compute(n_workers=1)
Expand All @@ -65,23 +65,26 @@ def interpolate_chunk(out_chunk1, out_chunk2, dim1, dim2, method, **kwargs):
del chunk
return out

chunk_sizes = grid_out.chunks[-2:] if hasattr(grid_out, 'chunks') else (self.chunksize, self.chunksize)
chunk_sizes = grid.chunks[-2:] if hasattr(grid, 'chunks') else (self.chunksize, self.chunksize)
# coordinates are numpy arrays
grid_out_y = da.from_array(grid_out[dim1].values, chunks=chunk_sizes[0])
grid_out_x = da.from_array(grid_out[dim2].values, chunks=chunk_sizes[1])
grid_y = da.from_array(grid[dim1].values, chunks=chunk_sizes[0])
grid_x = da.from_array(grid[dim2].values, chunks=chunk_sizes[1])

grid = da.blockwise(
dask_out = da.blockwise(
interpolate_chunk,
'yx',
grid_out_y, 'y',
grid_out_x, 'x',
dtype=grid_in.dtype,
grid_y, 'y',
grid_x, 'x',
dtype=data.dtype,
dim1=dim1,
dim2=dim2,
method=method,
**kwargs
)
return xr.DataArray(grid, coords=coords).rename(grid_in.name)
da_out = xr.DataArray(dask_out, coords=coords, dims=dims).rename(data.name)
del dask_out
# append all the input coordinates
return da_out.assign_coords({k: v for k, v in data.coords.items() if k not in coords})

@staticmethod
def nanconvolve2d_gaussian(data,
Expand Down

0 comments on commit 4d7966a

Please sign in to comment.