Skip to content

Commit

Permalink
Enhance regression functions to process wrapped phase
Browse files Browse the repository at this point in the history
  • Loading branch information
Alexey Pechnikov committed Dec 9, 2024
1 parent bd20361 commit 56108c9
Showing 1 changed file with 102 additions and 29 deletions.
131 changes: 102 additions & 29 deletions pygmtsar/pygmtsar/Stack_detrend.py
Original file line number Diff line number Diff line change
Expand Up @@ -145,7 +145,7 @@ class Stack_detrend(Stack_unwrap):
# return model

@staticmethod
def regression(data, variables, weight=None, valid_pixels_threshold=1000, **kwargs):
def regression(data, variables, weight=None, wrap=False, valid_pixels_threshold=1000, **kwargs):
"""
topo = sbas.get_topo().coarsen({'x': 4}, boundary='trim').mean()
yy, xx = xr.broadcast(topo.y, topo.x)
Expand Down Expand Up @@ -183,7 +183,6 @@ def regression(data, variables, weight=None, valid_pixels_threshold=1000, **kwar
#print ('chunk2d', chunk2d)

def regression_block(data, weight, *args, **kwargs):
#assert 0, stack.shape
data_values = data.ravel().astype(np.float64)
# manage variable number of variables
variables_stack = np.stack([arg[0] if arg.ndim==3 else arg for arg in args])
Expand All @@ -209,7 +208,16 @@ def regression_block(data, weight, *args, **kwargs):
del data_values, variables_values, weight_values
del nanmask_data, nanmask_values, nanmask_weight, nanmask
return np.nan * np.zeros(data.shape)


# Prepare target Y for regression
if wrap:
# Convert angles to sine and cosine as (N,2) -> (sin, cos) matrix
Y = np.column_stack([np.sin(data_values), np.cos(data_values)])
else:
# Just use data values as (N,1) matrix
Y = data_values.reshape(-1, 1)
del data_values

# build prediction model with or without plane removal (fit_intercept)
algorithm = kwargs.pop('algorithm', 'linear')
if algorithm == 'sgd':
Expand All @@ -220,14 +228,25 @@ def regression_block(data, weight, *args, **kwargs):
fit_params = {'linearregression__sample_weight': weight_values[~nanmask]} if weight.size > 1 else {}
else:
raise ValueError(f"Unsupported algorithm {kwargs['algorithm']}. Should be 'linear' or 'sgd'")
regr.fit(variables_values[:, ~nanmask].T, data_values[~nanmask], **fit_params)
del weight_values, data_values

regr.fit(variables_values[:, ~nanmask].T, Y[~nanmask], **fit_params)
del weight_values, Y

# Predict for all valid pixels
model_pred = regr.predict(variables_values[:, ~nanmask_values].T)
del regr

model = np.full_like(data, np.nan).ravel()
model[~nanmask_values] = regr.predict(variables_values[:, ~nanmask_values].T)
del variables_values, regr
if wrap:
# (N,2) -> (sin, cos)
model[~nanmask_values] = np.arctan2(model_pred[:, 0], model_pred[:, 1])
else:
# (N,1), just flatten
model[~nanmask_values] = model_pred.ravel()
del variables_values, model_pred
del nanmask_data, nanmask_values, nanmask_weight, nanmask
return model.reshape(data.shape).astype(np.float32)

dshape = data[0].shape if data.ndim==3 else data.shape
if isinstance(variables, (list, tuple)):
vshapes = [v[0].shape if v.ndim==3 else v.shape for v in variables]
Expand All @@ -241,7 +260,7 @@ def regression_block(data, weight, *args, **kwargs):
if not {vshape} == {dshape}:
print (f'NOTE: shapes of variables slice {vshape} and data slice {dshape} differ.')
variables_stack = [variables.reindex_like(data).chunk(dict(y=chunk2d[0], x=chunk2d[1]))]

if weight is not None:
if not weight.shape == data.shape:
print (f'NOTE: shapes of weight {weight.shape} and data {data.shape} differ.')
Expand All @@ -261,6 +280,7 @@ def regression_block(data, weight, *args, **kwargs):
dask_gufunc_kwargs={**kwargs},
)
del variables_stack

return model

def regression_linear(self, data, variables, weight=None, valid_pixels_threshold=1000, fit_intercept=True):
Expand Down Expand Up @@ -319,11 +339,11 @@ def regression_sgd(self, data, variables, weight=None, valid_pixels_threshold=10
return self.regression(data, variables, weight, valid_pixels_threshold, algorithm='sgd',
max_iter=max_iter, tol=tol, alpha=alpha, l1_ratio=l1_ratio)

def polyfit(self, data, weight=None, degree=0, days=None, count=None):
def polyfit(self, data, weight=None, degree=0, days=None, count=None, wrap=False):
print ('NOTE: Function is deprecated. Use Stack.regression_pairs() instead.')
return self.regression_pairs(data=data, weight=weight, degree=degree, days=days, count=count)
return self.regression_pairs(data=data, weight=weight, degree=degree, days=days, count=count, wrap=wrap)

def regression_pairs(self, data, weight=None, degree=0, days=None, count=None):
def regression_pairs(self, data, weight=None, degree=0, days=None, count=None, wrap=False):
import xarray as xr
import pandas as pd
import numpy as np
Expand All @@ -344,41 +364,94 @@ def regression_pairs(self, data, weight=None, degree=0, days=None, count=None):
else:
if 'stack' in weight.dims and isinstance(weight.coords['stack'].to_index(), pd.MultiIndex):
raise ValueError('ERROR: "weight", if provided, must be stacked consistently with "data".')

pairs, dates = self.get_pairs(data, dates=True)

models = []
if wrap:
models_sin = []
models_cos = []

for date in dates:
#print ('date', date)
data_pairs = pairs[(pairs.ref==date)|(pairs.rep==date)].pair.values
#print ('data_pairs', data_pairs)
if weight is None:
stack = data.sel(pair=data_pairs)
else:
stack = data.sel(pair=data_pairs) * np.sqrt(weight.sel(pair=data_pairs))
del data_pairs

stack_days = xr.where(stack.ref < pd.Timestamp(date),
(stack.ref - stack.rep).dt.days,
(stack.rep - stack.ref).dt.days)
#print ('stack_days', stack_days)
# select smallest intervals
stack_days_selected = stack_days[np.argsort(np.abs(stack_days.values))][:count]
if days is not None:
stack_days_selected = stack_days_selected[np.abs(stack_days_selected)<=days]
#print ('stack_days_selected', stack_days_selected)
linear_fit = (np.sign(stack_days)*stack).assign_coords(time=stack_days)\

selected_pairs = (np.sign(stack_days)*stack).assign_coords(time=stack_days)\
[stack.pair.isin(stack_days_selected.pair)]\
.swap_dims({'pair': 'time'})\
.sortby(['ref', 'rep'])\
.polyfit(dim='time', deg=degree)
model = linear_fit.polyfit_coefficients.sel(degree=degree).astype(np.float32)
models.append(model.assign_coords(date=pd.to_datetime(date)))
del data_pairs, stack, stack_days, stack_days_selected, linear_fit, model
model = xr.concat(models, dim='date')
del models

out = xr.concat([(model.sel(date=ref).drop('date') - model.sel(date=rep).drop('date'))\
.assign_coords(pair=str(ref.date()) + ' ' + str(rep.date()), ref=ref, rep=rep) \
for ref, rep in zip(pairs['ref'], pairs['rep'])], dim='pair').rename(data.name)
.sortby(['ref', 'rep'])
del stack, stack_days, stack_days_selected

if not wrap:
linear_fit = selected_pairs.polyfit(dim='time', deg=degree)
model = linear_fit.polyfit_coefficients.sel(degree=degree).astype(np.float32)
models.append(model.assign_coords(date=pd.to_datetime(date)))
del model, linear_fit
else:
# fit sine and cosine components
linear_fit_sin = np.sin(selected_pairs).polyfit(dim='time', deg=degree)
linear_fit_cos = np.cos(selected_pairs).polyfit(dim='time', deg=degree)

model_sin = linear_fit_sin.polyfit_coefficients.sel(degree=degree).astype(np.float32)
model_cos = linear_fit_cos.polyfit_coefficients.sel(degree=degree).astype(np.float32)

models_sin.append(model_sin.assign_coords(date=pd.to_datetime(date)))
models_cos.append(model_cos.assign_coords(date=pd.to_datetime(date)))
del model_sin, model_cos, linear_fit_sin, linear_fit_cos

del selected_pairs

if not wrap:
model = xr.concat(models, dim='date')
del models
out = xr.concat(
[
(model.sel(date=ref).drop('date') - model.sel(date=rep).drop('date'))
.assign_coords(pair=str(ref.date()) + ' ' + str(rep.date()), ref=ref, rep=rep)
for ref, rep in zip(pairs['ref'], pairs['rep'])
],
dim='pair'
).rename(data.name)
else:
# combine separate sin and cos models
model_sin = xr.concat(models_sin, dim='date')
model_cos = xr.concat(models_cos, dim='date')
del models_sin, models_cos

angle_diffs = []
for ref, rep in zip(pairs['ref'], pairs['rep']):
sin_ref = model_sin.sel(date=ref).drop('date')
cos_ref = model_cos.sel(date=ref).drop('date')
sin_rep = model_sin.sel(date=rep).drop('date')
cos_rep = model_cos.sel(date=rep).drop('date')

# compute angle differences using sin/cos difference formula
# sin(A−B) = sin A * cos B − cos A * sin B
sin_diff = sin_ref * cos_rep - cos_ref * sin_rep
# cos(A−B) = cos A * cos B+ sin A * sin B
cos_diff = cos_ref * cos_rep + sin_ref * sin_rep
del sin_ref, cos_ref, sin_rep, cos_rep

angle_diff = np.arctan2(sin_diff, cos_diff)\
.assign_coords(pair=str(ref.date()) + ' ' + str(rep.date()), ref=ref, rep=rep)
angle_diffs.append(angle_diff)
del angle_diff, sin_diff, cos_diff

out = xr.concat(angle_diffs, dim='pair').rename(data.name)
del angle_diffs

if multi_index is not None:
return out.assign_coords(stack=multi_index)
return out
Expand Down

0 comments on commit 56108c9

Please sign in to comment.