-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.html
224 lines (178 loc) · 41.6 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
<!DOCTYPE html>
<html>
<h2 style="text-align:center"> <b>ALOISIUS MARDIYANTO </b> </h2>
<h2 style="text-align:center"> <b>41416120167</b> </h2>
<head>
<link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css">
<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/2.2.4/jquery.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/0.9.0/p5.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/0.9.0/addons/p5.dom.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/0.9.0/addons/p5.sound.min.js"></script>
<!-- <link rel="stylesheet" type="text/css" href="style.css"> -->
<script src="matrix.js"></script>
<script src="sketch.js"></script>
<meta charset="utf-8" />
<script src="https://cdn.jsdelivr.net/npm/sweetalert2@8"></script>
</head>
<body>
<div class="container">
<form>
<div class="row">
<div class="col text-center">
<img src=""/>
</div>
</div>
<hr/>
<div class="row">
<div class="col">
<div class="form-group">
<label for="lr">Learning Rate</label>
<input type="text" class="form-control" id="lr" placeholder="Learning Rate">
</div>
</div>
<div class="col">
<div class="form-group">
<label for="epoch">Epoch <code><span id="ec" class="text-muted"></span></code></code></label>
<input type="number" class="form-control" id="epoch" placeholder="Epoch">
</div>
</div>
</div>
<div class="row">
<div class="col">
</div>
<div class="col">
<button type="button" class="btn btn-outline-primary" id="start" style="width: 100%">START</button>
</div>
</div>
<hr/>
<div class="row">
<div class="col">
<div class="form-group">
<label for="output">Output</label>
<input type="number" class="form-control" id="output" placeholder="Output" disabled>
</div>
</div>
<div class="col">
<div class="form-group">
<label for="mse">MSE</label>
<input type="text" class="form-control" id="mse" placeholder="MSE" disabled>
</div>
</div>
</div>
<div class="row">
<div class="col">
<div class="form-group">
<label for="etime">Elapsed Time</label>
<input type="text" class="form-control" id="etime" placeholder="Elapsed Time" disabled>
</div>
</div>
<div class="col">
</div>
</div>
</form>
<hr/>
<form>
<div class="row">
<div class="col">
<div class="form-group">
<label for="w1">W1</label>
<input type="number" class="form-control" id="w1" placeholder="W1" disabled>
</div>
</div>
<div class="col">
<div class="form-group">
<label for="w2">W2</label>
<input type="number" class="form-control" id="w2" placeholder="W2" disabled>
</div>
</div>
</div>
<div class="row">
<div class="col">
<div class="form-group">
<label for="W3">W3</label>
<input type="number" class="form-control" id="w3" placeholder="W3" disabled>
</div>
</div>
<div class="col">
<div class="form-group">
<label for="W4">W4</label>
<input type="number" class="form-control" id="w4" placeholder="W4" disabled>
</div>
</div>
</div>
<div class="row">
<div class="col">
<div class="form-group">
<label for="W5">W5</label>
<input type="number" class="form-control" id="w5" placeholder="W5" disabled>
</div>
</div>
<div class="col">
<div class="form-group">
<label for="W6">W6</label>
<input type="number" class="form-control" id="w6" placeholder="W6" disabled>
</div>
</div>
</div>
<div class="row">
<div class="col">
<div class="form-group">
<label for="W7">W7</label>
<input type="number" class="form-control" id="w7" placeholder="W7" disabled>
</div>
</div>
<div class="col">
</div>
</div>
</form>
<hr/>
</div>
<script type="text/javascript">
let nn;//neural network
$("#start").click(function(){
lr = $("#lr").val();
e = $("#epoch").val();
generate_ai(lr, e);
})
function generate_ai(lr, e){//Lr learning Rate, e Epoch
let training_data =[{
inputs : [0.05, 0.1],
outputs : [0.99]
}];
let start_time = Date.now();
nn = new NeuNet(
2, 2, 1, 1,//i, h1, h2, T
[
[0.2, -0.3],//w1 w2
[0.15, -0.5]//w3 w4
],
[1, 1],//b1
[
[-0.4, 0.3]//w5 w6
],
[0.5],//b2
[
[0.25]//w7
],
[1]//b3
)
for(n = 0; n < e; n++){//e
for(i = 0; i < 50; i++){
a = nn.training(training_data[0].inputs, training_data[0].outputs)
}
nn.setLearningRate(lr);//lr
y = nn.prediction(training_data[0].inputs);
let elapsed_time = (Date.now() - start_time)/1000;
if(n == (e-1)){
$("#mse").val(`${a[0].toFixed(4)} %`);
$("#output").val(`${y[0].toFixed(4)}`);
$("#etime").val(`${elapsed_time} seconds`);
}
}
}
</script>
<script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.7/umd/popper.min.js"></script>
<script src="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/js/bootstrap.min.js"></script>
</body>
</html>