Crawl4AI is available as Docker images for easy deployment. You can either pull directly from Docker Hub (recommended) or build from the repository.
🐳 Option 1: Docker Hub (Recommended)
Choose the appropriate image based on your platform and needs:
# Basic version (recommended)
docker pull unclecode/crawl4ai:basic-amd64
docker run -p 11235:11235 unclecode/crawl4ai:basic-amd64
# Full ML/LLM support
docker pull unclecode/crawl4ai:all-amd64
docker run -p 11235:11235 unclecode/crawl4ai:all-amd64
# With GPU support
docker pull unclecode/crawl4ai:gpu-amd64
docker run -p 11235:11235 unclecode/crawl4ai:gpu-amd64
# Basic version (recommended)
docker pull unclecode/crawl4ai:basic-arm64
docker run -p 11235:11235 unclecode/crawl4ai:basic-arm64
# Full ML/LLM support
docker pull unclecode/crawl4ai:all-arm64
docker run -p 11235:11235 unclecode/crawl4ai:all-arm64
# With GPU support
docker pull unclecode/crawl4ai:gpu-arm64
docker run -p 11235:11235 unclecode/crawl4ai:gpu-arm64
Need more memory? Add --shm-size
:
docker run --shm-size=2gb -p 11235:11235 unclecode/crawl4ai:basic-amd64
Test the installation:
curl http://localhost:11235/health
# Pull and run basic version (recommended for Raspberry Pi)
docker pull unclecode/crawl4ai:basic-armv7
docker run -p 11235:11235 unclecode/crawl4ai:basic-armv7
# With increased shared memory if needed
docker run --shm-size=2gb -p 11235:11235 unclecode/crawl4ai:basic-armv7
Note: Due to hardware constraints, only the basic version is recommended for Raspberry Pi.
🐳 Option 2: Build from Repository
Build the image locally based on your platform:
# Clone the repository
git clone https://github.com/unclecode/crawl4ai.git
cd crawl4ai
# For AMD64 (Regular Linux/Windows)
docker build --platform linux/amd64 \
--tag crawl4ai:local \
--build-arg INSTALL_TYPE=basic \
.
# For ARM64 (M1/M2 Macs, ARM servers)
docker build --platform linux/arm64 \
--tag crawl4ai:local \
--build-arg INSTALL_TYPE=basic \
.
Build options:
- INSTALL_TYPE=basic (default): Basic crawling features
- INSTALL_TYPE=all: Full ML/LLM support
- ENABLE_GPU=true: Add GPU support
Example with all options:
docker build --platform linux/amd64 \
--tag crawl4ai:local \
--build-arg INSTALL_TYPE=all \
--build-arg ENABLE_GPU=true \
.
Run your local build:
# Regular run
docker run -p 11235:11235 crawl4ai:local
# With increased shared memory
docker run --shm-size=2gb -p 11235:11235 crawl4ai:local
Test the installation:
curl http://localhost:11235/health
🐳 Option 3: Using Docker Compose
Docker Compose provides a more structured way to run Crawl4AI, especially when dealing with environment variables and multiple configurations.
# Clone the repository
git clone https://github.com/unclecode/crawl4ai.git
cd crawl4ai
# Build and run locally
docker-compose --profile local-amd64 up
# Run from Docker Hub
VERSION=basic docker-compose --profile hub-amd64 up # Basic version
VERSION=all docker-compose --profile hub-amd64 up # Full ML/LLM support
VERSION=gpu docker-compose --profile hub-amd64 up # GPU support
# Build and run locally
docker-compose --profile local-arm64 up
# Run from Docker Hub
VERSION=basic docker-compose --profile hub-arm64 up # Basic version
VERSION=all docker-compose --profile hub-arm64 up # Full ML/LLM support
VERSION=gpu docker-compose --profile hub-arm64 up # GPU support
Environment variables (optional):
# Create a .env file
CRAWL4AI_API_TOKEN=your_token
OPENAI_API_KEY=your_openai_key
CLAUDE_API_KEY=your_claude_key
The compose file includes:
- Memory management (4GB limit, 1GB reserved)
- Shared memory volume for browser support
- Health checks
- Auto-restart policy
- All necessary port mappings
Test the installation:
curl http://localhost:11235/health
🚀 One-Click Deployment
Deploy your own instance of Crawl4AI with one click:
💡 Recommended specs: 4GB RAM minimum. Select "professional-xs" or higher when deploying for stable operation.
The deploy will:
- Set up a Docker container with Crawl4AI
- Configure Playwright and all dependencies
- Start the FastAPI server on port
11235
- Set up health checks and auto-deployment