-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
525 lines (445 loc) · 26.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
#NOTE:!!!!! output_disp = disp_net(tgt_img) ; output_depth = 1/output_disp[:,0] is the final depth map!
import argparse
import time
import csv
import numpy as np
import torch
from torch.autograd import Variable
import torch.backends.cudnn as cudnn
import torch.optim
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data
import custom_transforms
import models
from utils import tensor2array, save_checkpoint, save_path_formatter
from inverse_warp import inverse_warp
from loss_functions1 import photometric_reconstruction_loss, explainability_loss, texture_aware_smooth_loss, compute_errors
from logger import TermLogger, AverageMeter
from tensorboardX import SummaryWriter
parser = argparse.ArgumentParser(description='2019 ICIP paper---Deep Unsupervised Learning for simultaneous visual odometry and depth estimation',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('data', metavar='DIR', ##directory of the dataset
help='path to dataset')
parser.add_argument('--dataset-format', default='sequential', metavar='STR',
help='dataset format, stacked: stacked frames \
sequential: sequential folders (easier to convert to with a non KITTI/Cityscape dataset')
parser.add_argument('--sequence-length', type=int, metavar='N', help='sequence length for training', default=3) ## sequence_length :t-1, t, t+1
parser.add_argument('--rotation-mode', type=str, choices=['euler', 'quat'], default='euler', ##euler angle
help='rotation mode for Posenet : euler (yaw,pitch,roll) or quaternion (last 3 coefficients)')
parser.add_argument('--padding-mode', type=str, choices=['zeros', 'border'], default='zeros',
help='padding mode for image warping.'
' zeros will null gradients outside target image.'
' border will only null gradients of the coordinate outside (x or y)')
parser.add_argument('--with-gt', action='store_true', help='use ground truth for validation. \
You need to store it in npy 2D arrays see data/kitti_raw_loader.py for an example')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers')
parser.add_argument('--epochs', default=200, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--epoch-size', default=0, type=int, metavar='N',
help='manual epoch size (will match dataset size if not set)')
parser.add_argument('-b', '--batch-size', default=4, type=int,
metavar='N', help='mini-batch size')
parser.add_argument('--lr', '--learning-rate', default=2e-4, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum for sgd, alpha parameter for adam')
parser.add_argument('--beta', default=0.999, type=float, metavar='M',
help='beta parameters for adam')
parser.add_argument('--weight-decay', '--wd', default=0, type=float,
metavar='W', help='weight decay')
parser.add_argument('--print-freq', default=10, type=int,
metavar='N', help='print frequency')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--pretrained-disp', dest='pretrained_disp', default=None, metavar='PATH',
help='path to pre-trained dispnet model')
parser.add_argument('--pretrained-exppose', dest='pretrained_exp_pose', default=None, metavar='PATH',
help='path to pre-trained Exp Pose net model')
parser.add_argument('--seed', default=0, type=int, help='seed for random functions, and network initialization')
parser.add_argument('--log-summary', default='progress_log_summary.csv', metavar='PATH',
help='csv where to save per-epoch train and valid stats')
parser.add_argument('--log-full', default='progress_log_full.csv', metavar='PATH',
help='csv where to save per-gradient descent train stats')
parser.add_argument('-p', '--photo-loss-weight', type=float, help='weight for photometric loss', metavar='W', default=1)
parser.add_argument('-m', '--mask-loss-weight', type=float, help='weight for explainabilty mask loss', metavar='W', default=0)
parser.add_argument('-s', '--texture-smooth-loss-weight', type=float, help='weight for disparity smoothness loss', metavar='W', default=0.1)
parser.add_argument('--log-output', action='store_true', help='will log dispnet outputs at validation step')
parser.add_argument('-f', '--training-output-freq', type=int, help='frequency for outputting dispnet outputs',
metavar='N', default=0)
best_error = -1
n_iter = 0
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
## /cis/yl4280/sfm-learner/KITTI_RAW_DATA/ -b4 -m0.2 -s0.1 --epochs 200 --sequence-length 3 --log-output
def main():
global best_error, n_iter, device
args = parser.parse_args()
if args.dataset_format == 'stacked':
from stacked_sequence_folders import SequenceFolder
elif args.dataset_format == 'sequential':
from sequence_folders2 import SequenceFolder
save_path = save_path_formatter(args, parser)
args.save_path = 'checkpoints'/save_path
print('=> will save everything to {}'.format(args.save_path))
args.save_path.makedirs_p()
torch.manual_seed(args.seed)
if args.evaluate:
args.epochs = 0
training_writer = SummaryWriter(args.save_path)
output_writers = []
if args.log_output:
for i in range(3):
output_writers.append(SummaryWriter(args.save_path/'valid'/str(i)))
# Data loading code
normalize = custom_transforms.Normalize(mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5])
train_transform = custom_transforms.Compose([
custom_transforms.RandomHorizontalFlip(),
custom_transforms.RandomScaleCrop(),
custom_transforms.ArrayToTensor(),
normalize
])
##validation data loading code
valid_transform = custom_transforms.Compose([custom_transforms.ArrayToTensor(), normalize])
print("=> fetching scenes in '{}'".format(args.data))
train_set = SequenceFolder( ###sequencefolder in sequence_folders.py is to load scenes from train.txt and val.txt, load intrinsic K and every sequence(t-1,t,t+1)
args.data,
transform=train_transform,
seed=args.seed,
train=True,
sequence_length=args.sequence_length
)
if args.with_gt: ###-------If --with_gt, the validation dataset will load the images(.jpg) as well as the depth(.npy) in every scene.
from validation_folders import ValidationSet ###----this is to modify the super-parameters of the network during the training process
val_set = ValidationSet(
args.data,
transform=valid_transform
)
else:
val_set = SequenceFolder( ###-----if without_gt, load sequences in every scene using the same way as training dataset
args.data,
transform=valid_transform,
seed=args.seed,
train=False,
sequence_length=args.sequence_length,
)
print('{} samples found in {} train scenes'.format(len(train_set), len(train_set.scenes)))
print('{} samples found in {} valid scenes'.format(len(val_set), len(val_set.scenes)))
train_loader = torch.utils.data.DataLoader(
train_set, batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True)
val_loader = torch.utils.data.DataLoader(
val_set, batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
if args.epoch_size == 0:
args.epoch_size = len(train_loader)
# create model
print("=> creating model")
disp_net = models.DispNetS().to(device) ###create models here ----DispNetS!
output_exp = args.mask_loss_weight > 0 ###------if training, return disp1, disp2, disp3, disp4
if not output_exp:
print("=> no mask loss, Posernnnet will only output pose")
pose_rnn_net = models.PoseRnnNet(nb_ref_imgs=args.sequence_length - 1, output_exp=args.mask_loss_weight > 0).to(device) ###create models here ----pose_rnn_net!
if args.pretrained_exp_pose: ###load pretrained posenet path
print("=> using pre-trained weights for explainabilty and pose net")
weights = torch.load(args.pretrained_exp_pose)
pose_rnn_net.load_state_dict(weights['state_dict'], strict=False)
else:
pose_rnn_net.init_weights()
if args.pretrained_disp: ###load pretrained dispnet path
print("=> using pre-trained weights for Dispnet")
weights = torch.load(args.pretrained_disp)
disp_net.load_state_dict(weights['state_dict'])
else:
disp_net.init_weights()
cudnn.benchmark = True
disp_net = torch.nn.DataParallel(disp_net)
pose_rnn_net = torch.nn.DataParallel(pose_rnn_net)
print('=> setting adam solver')
optim_params = [ ###Optim params to give different models different learning rate and parameters
{'params': disp_net.parameters(), 'lr': args.lr},
{'params': pose_rnn_net.parameters(), 'lr': args.lr}
]
optimizer = torch.optim.Adam(optim_params,
betas=(args.momentum, args.beta),
weight_decay=args.weight_decay)
with open(args.save_path/args.log_summary, 'w') as csvfile:
writer = csv.writer(csvfile, delimiter='\t')
writer.writerow(['train_loss', 'validation_loss'])
with open(args.save_path/args.log_full, 'w') as csvfile:
writer = csv.writer(csvfile, delimiter='\t')
writer.writerow(['train_loss', 'photo_loss', 'exp_loss', 'texture_aware_smooth_loss'])
logger = TermLogger(n_epochs=args.epochs, train_size=min(len(train_loader), args.epoch_size), valid_size=len(val_loader))
logger.epoch_bar.start()
if args.pretrained_disp or args.evaluate:
logger.reset_valid_bar()
if args.with_gt:
errors, error_names = validate_with_gt(args, val_loader, disp_net, 0, logger, output_writers)
else:
errors, error_names = validate_without_gt(args, val_loader, disp_net, pose_rnn_net, 0, logger, output_writers)
for error, name in zip(errors, error_names):
training_writer.add_scalar(name, error, 0)
error_string = ', '.join('{} : {:.3f}'.format(name, error) for name, error in zip(error_names[2:9], errors[2:9]))
logger.valid_writer.write(' * Avg {}'.format(error_string))
#---------------------------------------------------------------------------------------------------------------------------------------------------
####for every epoch, use train() to train pose_rnn_net and disp_net , save the best model(lowest errors) during validation process!
for epoch in range(args.epochs):
logger.epoch_bar.update(epoch)
# train for one epoch
logger.reset_train_bar()
train_loss = train(args, train_loader, disp_net, pose_rnn_net, optimizer, args.epoch_size, logger, training_writer) #!!!!!!!!!!!!!!!!!!!train for every epochs
logger.train_writer.write(' * Avg Loss : {:.3f}'.format(train_loss))
# evaluate on validation set
logger.reset_valid_bar()
if args.with_gt:
errors, error_names = validate_with_gt(args, val_loader, disp_net, epoch, logger, output_writers)
else:
errors, error_names = validate_without_gt(args, val_loader, disp_net, pose_rnn_net, epoch, logger, output_writers)
error_string = ', '.join('{} : {:.3f}'.format(name, error) for name, error in zip(error_names, errors))
logger.valid_writer.write(' * Avg {}'.format(error_string))
for error, name in zip(errors, error_names):
training_writer.add_scalar(name, error, epoch)
# Up to you to chose the most relevant error to measure your model's performance, careful some measures are to maximize (such as a1,a2,a3)
decisive_error = errors[1]
if best_error < 0:
best_error = decisive_error
# remember lowest error and save checkpoint
is_best = decisive_error < best_error
best_error = min(best_error, decisive_error)
save_checkpoint( ####save the best model(lowest validation error) path until now!
args.save_path, {
'epoch': epoch + 1,
'state_dict': disp_net.module.state_dict()
}, {
'epoch': epoch + 1,
'state_dict': pose_rnn_net.module.state_dict()
},
is_best)
with open(args.save_path/args.log_summary, 'a') as csvfile:
writer = csv.writer(csvfile, delimiter='\t')
writer.writerow([train_loss, decisive_error])
logger.epoch_bar.finish()
#---------------------------------------------------------------------------------------------------------------
def train(args, train_loader, disp_net, pose_rnn_net, optimizer, epoch_size, logger, train_writer): ##----------train() process in every epochs
global n_iter, device
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter(precision=4) ##--------------losses=AverageMeter()
w1, w2, w3 = args.photo_loss_weight, args.mask_loss_weight, args.texture_smooth_loss_weight
# switch to train mode
disp_net.train()
pose_rnn_net.train()
end = time.time()
logger.train_bar.update(0)
for i, (tgt_img, ref_imgs, intrinsics, intrinsics_inv) in enumerate(train_loader): ###-------for every train() load and iterate all the images!
# measure data loading time
data_time.update(time.time() - end)
tgt_img = tgt_img.to(device)
ref_imgs = [img.to(device) for img in ref_imgs]
intrinsics = intrinsics.to(device)
intrinsics_inv = intrinsics_inv.to(device)
# compute output
disparities = disp_net(tgt_img)
depth = [1/disp for disp in disparities] ###---------output inverse disp
explainability_mask, pose = pose_rnn_net(tgt_img, ref_imgs)
loss_1 = photometric_reconstruction_loss(tgt_img, ref_imgs,
intrinsics, intrinsics_inv,
depth, explainability_mask, pose,
args.rotation_mode, args.padding_mode)
if w2 > 0:
loss_2 = explainability_loss(explainability_mask)
else:
loss_2 = 0
loss_3 = texture_aware_smooth_loss(depth)
loss = w1*loss_1 + w2*loss_2 + w3*loss_3 ##------------get the total losses
if i > 0 and n_iter % args.print_freq == 0:
train_writer.add_scalar('photometric_error', loss_1.item(), n_iter)
if w2 > 0:
train_writer.add_scalar('explanability_loss', loss_2.item(), n_iter)
train_writer.add_scalar('Texture_smoothness_loss', loss_3.item(), n_iter)
train_writer.add_scalar('total_loss', loss.item(), n_iter)
if args.training_output_freq > 0 and n_iter % args.training_output_freq == 0:
train_writer.add_image('train Input', tensor2array(tgt_img[0]), n_iter)
for k, scaled_depth in enumerate(depth):
train_writer.add_image('train Dispnet Output Normalized {}'.format(k),
tensor2array(disparities[k][0], max_value=None, colormap='bone'),
n_iter)
train_writer.add_image('train Depth Output Normalized {}'.format(k),
tensor2array(1/disparities[k][0], max_value=None),
n_iter)
b, _, h, w = scaled_depth.size()
downscale = tgt_img.size(2)/h
tgt_img_scaled = F.interpolate(tgt_img, (h, w), method='area', align_corners=False)
ref_imgs_scaled = [nn.functional.adaptive_avg_pool2d(ref_img, (h, w)) for ref_img in ref_imgs]
intrinsics_scaled = torch.cat((intrinsics[:, 0:2]/downscale, intrinsics[:, 2:]), dim=1)
intrinsics_scaled_inv = torch.cat((intrinsics_inv[:, :, 0:2]*downscale, intrinsics_inv[:, :, 2:]), dim=2)
# log warped images along with explainability mask
for j,ref in enumerate(ref_imgs_scaled):
ref_warped = inverse_warp(ref, scaled_depth[:,0], pose[:,j],
intrinsics_scaled, intrinsics_scaled_inv,
rotation_mode=args.rotation_mode,
padding_mode=args.padding_mode)[0]
train_writer.add_image('train Warped Outputs {} {}'.format(k,j),
tensor2array(ref_warped),
n_iter)
train_writer.add_image('train Diff Outputs {} {}'.format(k,j),
tensor2array(0.5*(tgt_img_scaled[0] - ref_warped).abs()),
n_iter)
if explainability_mask[k] is not None:
train_writer.add_image('train Exp mask Outputs {} {}'.format(k,j),
tensor2array(explainability_mask[k][0,j], max_value=1, colormap='bone'),
n_iter)
# record loss and EPE
losses.update(loss.item(), args.batch_size) ###--------------losses.update()
# compute gradient and do Adam step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
with open(args.save_path/args.log_full, 'a') as csvfile:
writer = csv.writer(csvfile, delimiter='\t')
writer.writerow([loss.item(), loss_1.item(), loss_2.item() if w2 > 0 else 0, loss_3.item()])
logger.train_bar.update(i+1)
if i % args.print_freq == 0:
logger.train_writer.write('Train: Time {} Data {} Loss {}'.format(batch_time, data_time, losses))
if i >= epoch_size - 1:
break
n_iter += 1
return losses.avg[0] ##--------------return losses.avg
#----------------------------------------------------------------------------------------------------------------------
@torch.no_grad()
def validate_without_gt(args, val_loader, disp_net, pose_rnn_net, epoch, logger, output_writers=[]):
global device
batch_time = AverageMeter()
losses = AverageMeter(i=3, precision=4) ##------losses=AverageMeter()
log_outputs = len(output_writers) > 0
w1, w2, w3 = args.photo_loss_weight, args.mask_loss_weight, args.texture_smooth_loss_weight
poses = np.zeros(((len(val_loader)-1) * args.batch_size * (args.sequence_length-1),6))
disp_values = np.zeros(((len(val_loader)-1) * args.batch_size * 3))
# switch to evaluate mode
disp_net.eval()
pose_rnn_net.eval()
end = time.time()
logger.valid_bar.update(0)
for i, (tgt_img, ref_imgs, intrinsics, intrinsics_inv) in enumerate(val_loader):
tgt_img = tgt_img.to(device)
ref_imgs = [img.to(device) for img in ref_imgs]
intrinsics = intrinsics.to(device)
intrinsics_inv = intrinsics_inv.to(device)
# compute output
disp = disp_net(tgt_img)
depth = 1/disp
explainability_mask, pose = pose_rnn_net(tgt_img, ref_imgs)
loss_1 = photometric_reconstruction_loss(tgt_img, ref_imgs,
intrinsics, intrinsics_inv,
depth, explainability_mask, pose,
args.rotation_mode, args.padding_mode)
loss_1 = loss_1.item()
if w2 > 0:
loss_2 = explainability_loss(explainability_mask).item()
else:
loss_2 = 0
loss_3 = texture_aware_smooth_loss(depth).item()
if log_outputs and i < len(output_writers):
if epoch == 0:
for j,ref in enumerate(ref_imgs):
output_writers[i].add_image('val Input {}'.format(j), tensor2array(tgt_img[0]), 0)
output_writers[i].add_image('val Input {}'.format(j), tensor2array(ref[0]), 1)
output_writers[i].add_image('val Dispnet Output Normalized',
tensor2array(disp[0], max_value=None, colormap='bone'),
epoch)
output_writers[i].add_image('val Depth Output Normalized',
tensor2array(1./disp[0], max_value=None),
epoch)
for j,ref in enumerate(ref_imgs):
ref_warped = inverse_warp(ref[:1], depth[:1,0], pose[:1,j],
intrinsics[:1], intrinsics_inv[:1],
rotation_mode=args.rotation_mode,
padding_mode=args.padding_mode)[0]
output_writers[i].add_image('val Warped Outputs {}'.format(j),
tensor2array(ref_warped),
epoch)
output_writers[i].add_image('val Diff Outputs {}'.format(j),
tensor2array(0.5*(tgt_img[0] - ref_warped).abs()),
epoch)
if explainability_mask is not None:
output_writers[i].add_image('val Exp mask Outputs {}'.format(j),
tensor2array(explainability_mask[0,j], max_value=1, colormap='bone'),
epoch)
if log_outputs and i < len(val_loader)-1:
step = args.batch_size*(args.sequence_length-1)
poses[i * step:(i+1) * step] = pose.cpu().view(-1,6).numpy()
step = args.batch_size * 3
disp_unraveled = disp.cpu().view(args.batch_size, -1)
disp_values[i * step:(i+1) * step] = torch.cat([disp_unraveled.min(-1)[0],
disp_unraveled.median(-1)[0],
disp_unraveled.max(-1)[0]]).numpy()
loss = w1*loss_1 + w2*loss_2 + w3*loss_3
losses.update([loss, loss_1, loss_2, loss_3])
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
logger.valid_bar.update(i+1)
if i % args.print_freq == 0:
logger.valid_writer.write('valid: Time {} Loss {}'.format(batch_time, losses))
if log_outputs:
prefix = 'valid poses'
coeffs_names = ['tx', 'ty', 'tz']
if args.rotation_mode == 'euler':
coeffs_names.extend(['rx', 'ry', 'rz'])
elif args.rotation_mode == 'quat':
coeffs_names.extend(['qx', 'qy', 'qz'])
for i in range(poses.shape[1]):
output_writers[0].add_histogram('{} {}'.format(prefix, coeffs_names[i]), poses[:,i], epoch)
output_writers[0].add_histogram('disp_values', disp_values, epoch)
logger.valid_bar.update(len(val_loader))
return losses.avg, ['Total loss', 'Photo loss', 'Exp loss', 'Texture_loss'] #####---- return errors, error_names!
@torch.no_grad()
def validate_with_gt(args, val_loader, disp_net, epoch, logger, output_writers=[]): ##------if validation process using predicted depth map and GT depth
global device
batch_time = AverageMeter()
error_names = ['abs_diff', 'abs_rel', 'sq_rel', 'a1', 'a2', 'a3']
errors = AverageMeter(i=len(error_names))
log_outputs = len(output_writers) > 0
# switch to evaluate mode
disp_net.eval()
end = time.time()
logger.valid_bar.update(0)
for i, (tgt_img, depth) in enumerate(val_loader):
tgt_img = tgt_img.to(device)
depth = depth.to(device)
# compute output
output_disp = disp_net(tgt_img)
output_depth = 1/output_disp[:,0]
if log_outputs and i < len(output_writers):
if epoch == 0:
output_writers[i].add_image('val Input', tensor2array(tgt_img[0]), 0)
depth_to_show = depth[0]
output_writers[i].add_image('val target Depth',
tensor2array(depth_to_show, max_value=10),
epoch)
depth_to_show[depth_to_show == 0] = 1000
disp_to_show = (1/depth_to_show).clamp(0,10)
output_writers[i].add_image('val target Disparity Normalized',
tensor2array(disp_to_show, max_value=None, colormap='bone'),
epoch)
output_writers[i].add_image('val Dispnet Output Normalized',
tensor2array(output_disp[0], max_value=None, colormap='bone'),
epoch)
output_writers[i].add_image('val Depth Output',
tensor2array(output_depth[0], max_value=3),
epoch)
errors.update(compute_errors(depth, output_depth))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
logger.valid_bar.update(i+1)
if i % args.print_freq == 0:
logger.valid_writer.write('valid: Time {} Abs Error {:.4f} ({:.4f})'.format(batch_time, errors.val[0], errors.avg[0]))
logger.valid_bar.update(len(val_loader))
return errors.avg, error_names #####---- return errors, error_names!
if __name__ == '__main__':
main()