M competition is a well-known competition focused on time series forecasting, held once a year. This year's M6 is a financial forecasting competition that primarily focuses on predicting stock prices (returns) and risks, providing new perspectives on the Efficient Market Hypothesis (EMH).
Our Team: OPPO XZ Lab
Final Global Rank: 4th
cd m6_dea_dnn
Data Pulling
python ./code/feature/data_crawler.py --meta_path './eod_data/M6_Universe.csv' --api_key '[EOD API key]' --save_path './data/' --year_duration 5
(2) Feature Engieering
mkdir pp_data2
python ./code/feature/feature_engineer.py --data_path './data/' --self_data_path './pp_data2/'
(3) Forecast Modeling we support three models for forecasting.
# LightGBM
python ./code/lgb_classifier.py
# DNN
python ./code/dnn_classifier.py
# DNN with DAE
python ./code/autoencoder_dnn_classifier.py
(4) Decision Making
- Data Preparation:
data_preparation.ipynb
- Traditional models:
traditional_models.ipynb
- GA and PSO:
nonlinear_models.ipynb
- DE:
DE_experiments.ipynb
Experiment result see:
# Traditional models
traditional_models.ipynb
# GA
ga_weights.zip
# PSO
pso_weights.zip
# DE
de_weights_100_100.zip
de_weights_maxiter.zip
de_weights_sizepop.zip