This repository helps you generate a veritable cornucopia of persian licence plates. You're almost done with this part, training your own CNN would be the next step!
For the sake of ease, generated licence plates come with their annotations:
Generated sample with perspective transformations:
On top of all that, it automatically generates associated xml files in pascal voc format:
Sample neural network trained on this dataset:
Model zoo faster_rcnn_inception_v2_coco
Because of oop pattern you won't need to make significant changes unless you want something structurally different!
*Note: if you have trouble installing jsonnet on windows
use win_conf.json instead and remove jsonnet dependencies
(For installing jsonnet on windows run: "pip install jsonnet-binary")
-
Got all requirements installed:
pip3 install --upgrade -r requirements.txt
-
Tweak configuration file: (optional)
- project_configurations.jsonnet
-
Out-of-the-box data generation:
- With default parameters:
$ python3 main.py
- Override config parameters:
$ pyhton3 main.py --num_out_img 10000
$ pyhton3 main.py --apply_misc_noise False
$ pyhton3 main.py --apply_dirt False
$ pyhton3 main.py --output_directory 'output'
(doesn't already exist)
$ pyhton3 main.py --img_per_package 8000
- With default parameters: