lindsvg (pronounced /ˈlɪnds ˈviː ˈdʒiː/), Lindenmayer System [Scalable] Vector Graphics
Simple dependency-free module used to generate SVG images of deterministic L-systems.
Installing the module is as simple as:
npm install lindsvg
Now you may get it in your scripts as usual: require("lindsvg")
, or import * as lindsvg from "lindsvg"
.
lindsvg is available in UMD format which allows you using it either with AMD/CJS compatible module loaders or in global namespace (window.lindsvg
). You may get the module sources from such CDNs as jsDelivr or unpkg:
<script src="https://cdn.jsdelivr.net/npm/lindsvg/dist/lindsvg.min.js"></script>
If you rather prefer using ES modules in a browser, just choose the “esm” bundle:
<script type="module">
import * as lindsvg from "https://cdn.jsdelivr.net/npm/lindsvg/dist/lindsvg.esm.min.js";
// ...
</script>
The following turtle commands are currently supported by lindsvg:
Command | Description |
---|---|
F |
Move forward one step with drawing a line |
B |
Move forward one step without drawing a line |
+ |
Turn left by turning angle (theta) |
- |
Turn right by turning angle (theta) |
| |
Reverse direction (turn by 180 degrees) |
! |
Reverse the meaning of + and - |
[ |
Push current state of the turtle onto the stack |
] |
Pop a state from the stack and apply it to the turtle |
A ,C –E ,G –Z |
Auxiliary user-defined rules |
The module exports two pairs of methods.
- The methods returning ready-to-render L-system’s SVG code as a string:
getSVGCode(lsParams[, svgParams])
;getMultiPathSVGCode(lsParams[, svgParams])
;
- The methods returning raw data that you may use to construct the SVG code yourself:
getSVGData(lsParams)
;getMultiPathSVGData(lsParams)
.
The “multi-path” methods (getMultiPathSVGCode
and getMultiPathSVGData
) differ from the “normal” methods (getSVGCode
and getSVGData
) in that they provide the ability for advanced stylisation of branched L-systems. SVG images created using these “multi-path” methods contain several <path>
elements, each one for a specific branching level, so they can be stylised differently (color, line width, etc.)
All methods expect L-system parameters object as their first argument. These parameters are explained through the comments in the snippet below. Additionally, the methods getSVGCode
and getMultiPathSVGCode
may be passed an optional parameter to alter the output SVG settings (refer the comments in the snippet below).
import {getSVGCode, getSVGData} from "lindsvg";
// L-system parameters
let lsParams = {
axiom: "A---A", // The initial codeword (axiom)
rules: { // L-system production rules
F: "F", // Move forward a step with drawing a line
B: "B", // Move forward a step without drawing a line
A: "B-F+Z+F-BA", // Auxiliary rules...
Z: "F-FF-F--[--Z]F-FF-F--F-FF-F--",
},
alpha: 0, // Initial angle in radians
theta: Math.PI / 3, // Angle increment in radians
step: 15, // The length of a “turtle” step
iterations: 7, // Total number of iterations
};
// Output SVG parameters (all of them are optional)
let svgParams = {
width: 600, // Desired SVG element width
height: 600, // Desired SVG element height
padding: 5, // Additional space to extend the viewBox
pathAttributes: { // Name to value map for the <path> element attributes
stroke: "green",
"stroke-width": "2",
},
};
// Get ready-to-render L-system’s SVG code as a string...
let svgCode = getSVGCode(lsParams, svgParams);
// ...or get raw data required for manual SVG assemblage
let {pathData, minX, minY, width, height} = getSVGData(lsParams);
An object returned by getSVGData
contains path data needed to draw the L-system, as well as the drawing boundaries that are essential for the viewBox
attribute.
Using “multi-path” methods (getMultiPathSVGCode
and getMultiPathSVGData
) allows you to specify different path attributes for every <path>
element separately, which may make branched L-systems (like plants) look “more naturally”.
For example, to generate the tree demonstrated above (all but foliage) the following options were used:
import {getMultiPathSVGCode, getMultiPathSVGData} from "lindsvg";
// L-system parameters
let lsParams = {
axiom: "F-FFF-F+F+X",
rules: {
F: "F",
X: "FFF-[-F+F[Y]-[X]]+[+F+F[X]-[X]]",
Y: "FF-[-F+F]+[+F+FY]",
},
alpha: 90 * Math.PI / 180,
theta: 14 * Math.PI / 180,
iterations: 6,
step: 12,
};
// Output SVG parameters
let svgParams = {
width: 565,
height: 445,
padding: 10,
pathAttributes: {
stroke: "#514d3a",
"stroke-width": ["16", "11", "9", "7", "6", "5", "3", "2", "1"],
"stroke-linecap": ["square", "round" /* the rest items are equal to the last one */],
},
};
// Get ready-to-render L-system’s SVG code as a string...
let svgCode = getMultiPathSVGCode(lsParams, svgParams);
// ...or get raw data required for manual SVG assemblage
let {multiPathData, minX, minY, width, height} = getMultiPathSVGData(lsParams);
If an attribute array contains fewer elements than the maximum branching depth (e.g. see stroke-linecap
in the example above), the missing items are implicitly made equal to the last one. So you don’t need to repeat the same value in the end of the list.
You may also use the special value "n/a"
which prevents an attribute from being added on the corresponding <path>
element (e.g. when you need to add an attribute only to one or to a few <path>
s: {pathAttributes: {transform: ["skewY(-35)", "n/a"]}}
).
The property multiPathData
in the object returned by getMultiPathSVGData
is a list of path data for every <path>
element. The list is sorted in the order of increasing branch level (the deeper the branch the higher the index in the array).
In case of invalid input L-system parameters, the methods throw a custom exception. You may use it to get a detailed explanation of which parameter(s) failed to pass validation, and format the message as you wish.
import {getSVGCode} from "lindsvg";
import {dump} from "js-yaml";
try {
console.log(getSVGCode(lsParams, svgParams));
} catch (error) {
// Log the original message
console.error(error);
if (error.name === "LSError") {
// Get a JSON representation of the error list and format it as YAML
let errorJSON = error.toJSON();
console.log(dump(errorJSON, {indent: 4}));
}
}
Please, visit the project’s demo web app (installable as a PWA and works offline too). You will find a few built-in L-system collections there, and will also be able to experiment with lindsvg while building your own L-systems.
Also, check out this collection on CodePen to get a few advanced examples of using lindsvg.