-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpostprocessing.py
70 lines (58 loc) · 2.09 KB
/
postprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
"""
Post-processing on the output data of Faster R-CNN to get
additional information from the Open Panorama API.
"""
from src.api_request import get_pano_location
from src.geometry import pixel_to_viewpoint
import csv
import numpy as np
import glob
import os
PANO_WIDTH = 2000 # We used the "panorama_2000" images in Faster R-CNN
NUM_WORKERS = 6
INPUT_FOLDER = "data/faster_r-cnn_output/"
OUTPUT_FOLDER = "data/postprocessing_output/"
def process_csv(input_file):
"""
Iterate over the input CSV and get:
- Camera location information
- Viewpoint of the camera to the detected object (in degrees)
"""
rows_list = []
with open(input_file) as f:
csv_reader = csv.reader(f, delimiter=",")
next(f) # skip the first line
for row in csv_reader:
if len(row) < 2:
print("Broken entry ignored")
continue
if len(row) < 3:
pano_id, center_bbox = row[0], float(row[1])
else:
print("Broken entry ignored")
continue
location = get_pano_location(pano_id)
viewpoint_to_object = pixel_to_viewpoint(center_bbox, PANO_WIDTH)
rows_list.append((location[0], location[1], round(viewpoint_to_object, 2)))
output_file = OUTPUT_FOLDER + os.path.basename(input_file)
if os.path.isfile(output_file):
print("A file with the specified ouput name already exists.")
# Save the list of float values
np.savetxt(output_file, rows_list, delimiter=",", newline="\n", fmt="%s",
comments="", header="x,y,viewpoint")
def main():
input_files = glob.glob(INPUT_FOLDER + "*.csv")
if len(input_files) < 1:
print("No input file(s) found. Aborting.")
return
if len(input_files) == 1:
process_csv(input_files[0])
else:
# Use multiprocessing if two or more input files are found
import multiprocessing
p = multiprocessing.Pool(processes = NUM_WORKERS)
p.map_async(process_csv, input_files)
p.close()
p.join()
if __name__ == "__main__":
main()