-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRedBlackMG_Serial.c
236 lines (202 loc) · 7 KB
/
RedBlackMG_Serial.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
//Serial Red Black Method with Multigrid
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#include<omp.h>
//Memory allocation for matrices
double** allocate2DArray(int rows, int cols) {
double **arr = (double **)malloc(rows * sizeof(double *));
for (int i = 0; i < rows; i++) {
arr[i] = (double *)malloc(cols * sizeof(double));
}
return arr;
}
//Memory deallocation for matrices
void deallocate2DArray(double **arr, int rows) {
for (int i = 0; i < rows; i++) {
free(arr[i]);
}
free(arr);
}
int main(){
double t1,t2;
t1 = omp_get_wtime();
//Mesh Parameters
int xmin = 0, xmax = 1, ymin = 0, ymax = 1;
int N1 = 33, N2 = 17;
int pre = 5;
double delta1 = (double)(xmax - xmin)/(N1-1);
double delta2 = (double)(xmax - xmin)/(N2-1);
//Memory Allocation
double **phi, **phi_exact;
double **res1, **res2;
double **delx1, **delx2;
double **q;
phi = allocate2DArray(N1, N1);
phi_exact = allocate2DArray(N1, N1);
res1 = allocate2DArray(N1, N1);
res2 = allocate2DArray(N2, N2);
delx1 = allocate2DArray(N1, N1);
delx2 = allocate2DArray(N2, N2);
q = allocate2DArray(N1, N1);
//Initial Guesses and Boundary Conditions
int i,j,k; double x,y;
for(i = 0; i<N1 ;i++){
for(j = 0; j<N1; j++){
x = xmin + delta1*j;
y = ymin + delta1*i;
phi[i][j] = 0;
if (i == 0)
phi[i][j] = exp(x);
if (i == N1-1)
phi[i][j] = exp(x-2);
if (j == 0)
phi[i][j] = exp(-2*y);
if (j == N1-1)
phi[i][j] = exp(1-2*y);
res1[i][j] = 0;
delx1[i][j] = 0;
}
}
for(i = 0; i<N2 ;i++){
for(j = 0; j<N2; j++){
res2[i][j] = 0;
delx2[i][j] = 0;
}
}
//RHS of Poisson equation
for(i = 1; i<N1-1 ;i++){
for(j = 1; j<N1-1; j++){
x = xmin + j*delta1;
y = ymin + i*delta1;
q[i][j] = 5*exp(x)*exp(-2*y);
}
}
//Exact Solution
for(i = 0; i<N1; i++){
for(j = 0; j<N1; j++){
x = xmin + delta1*j;
y = ymin + delta1*i;
phi_exact[i][j] = exp(x)*exp(-2*y);
}
}
//Norm of exact solution
double norm_exact = 0;
for(i = 0; i<N1; i++){
for(j = 0; j<N1; j++){
norm_exact += phi_exact[i][j]*phi_exact[i][j];
}
}
norm_exact = sqrt(norm_exact);
int iter = 0;
double err = 1;
//Main loop
while(err>0.0001){
//Pre Smoothing
for(k = 0; k<pre; k++){
//Updating odd elements
for(i = 1; i<N1-1; i++){
for(j = 1; j<N1-1; j++){
if((i+j)%2 == 1)
phi[i][j] = 0.25*(phi[i][j+1] + phi[i][j-1] + phi[i+1][j] + phi[i-1][j] - delta1*delta1*q[i][j]);
}
}
//Updating even elements
for(i=1; i<N1-1; i++){
for(j=1; j<N1-1; j++){
if((i+j)%2 == 0)
phi[i][j] = 0.25*(phi[i][j+1] + phi[i][j-1] + phi[i+1][j] + phi[i-1][j] - delta1*delta1*q[i][j]);
}
}
}
//Residual
for(i = 1; i<N1-1 ;i++){
for(j = 1; j<N1-1; j++){
res1[i][j] = q[i][j] - (phi[i+1][j] + phi[i-1][j] + phi[i][j+1] + phi[i][j-1] - 4*phi[i][j])/(delta1*delta1);
}
}
//Restricton
for(i = 1; i<N2-1 ;i++){
for(j = 1; j<N2-1; j++){
res2[i][j] = 0.25*res1[2*i][2*j] + 0.125*(res1[2*i+1][2*j] + res1[2*i-1][2*j] + res1[2*i][2*j+1] + res1[2*i][2*j-1]) + 0.0625*(res1[2*i+1][2*j+1] + res1[2*i-1][2*j-1] + res1[2*i+1][2*j-1] + res1[2*i-1][2*j+1]);
}
}
//Smoothing
for(k = 0; k<pre; k++){
//Updating odd elements
for(i = 1; i<N2-1; i++){
for(j = 1; j<N2-1; j++){
if((i+j)%2 == 1)
delx2[i][j] = 0.25*(delx2[i][j+1] + delx2[i][j-1] + delx2[i+1][j] + delx2[i-1][j] - delta2*delta2*res2[i][j]);
}
}
//Updating even elements
for(i = 1; i<N2-1; i++){
for(j = 1; j<N2-1; j++){
if((i+j)%2 ==0)
delx2[i][j] = 0.25*(delx2[i][j+1] + delx2[i][j-1] + delx2[i+1][j] + delx2[i-1][j] - delta2*delta2*res2[i][j]);
}
}
}
//Interpolation
for(i = 1; i<N2-1 ;i++){
for(j = 1; j<N2-1; j++){
delx1[2*i][2*j] = delx2[i][j];
}
}
//Vertical Sweep
for(i = 1; i<N2-1 ;i++){
for(j = 1; j<N2-1; j++){
delx1[2*i+1][2*j] = 0.5*(delx2[i][j] + delx2[i+1][j]);
if(i == 1)
delx1[2*i-1][2*j] = 0.5*(delx2[i][j] + delx2[i-1][j]);
}
}
//Horizontal Sweep
for(i = 1; i<N2-1 ;i++){
for(j = 1; j<N2-1; j++){
delx1[2*i][2*j+1] = 0.5*(delx2[i][j] + delx2[i][j+1]);
if(j == 1)
delx1[2*i][2*j-1] = 0.5*(delx2[i][j] + delx2[i][j-1]);
}
}
//4 point interpolation
for(i = 1; i<N2-1 ;i++){
for(j = 1; j<N2-1; j++){
delx1[2*i+1][2*j+1] = 0.25*(delx2[i][j] + delx2[i+1][j+1] + delx2[i+1][j] + delx2[i][j+1]);
delx1[2*i+1][2*j-1] = 0.25*(delx2[i][j] + delx2[i+1][j-1] + delx2[i+1][j] + delx2[i][j-1]);
delx1[2*i-1][2*j-1] = 0.25*(delx2[i][j] + delx2[i-1][j-1] + delx2[i-1][j] + delx2[i][j-1]);
delx1[2*i-1][2*j+1] = 0.25*(delx2[i][j] + delx2[i-1][j+1] + delx2[i-1][j] + delx2[i][j+1]);
}
}
//Adding the correction
for(i = 1; i<N1-1 ;i++){
for(j = 1; j<N1-1; j++){
phi[i][j] += (delx1[i][j]);
}
}
//Error Calculation
err = 0;
for (i = 0; i<N1; i++){
for(j = 0; j<N1; j++){
err += (phi_exact[i][j] - phi[i][j])*(phi_exact[i][j] - phi[i][j]);
}
}
err = sqrt(err)/norm_exact;
iter += 1;
}
t2 = omp_get_wtime();
printf("Number of iterations for Serial Red Black with Multigrid are : %d\n",2*pre*iter);
printf("The problem size is : %d x %d\n",N1,N1);
printf("The error is : %lf\n",err);
printf("The time taken is : %lf\n",t2-t1);
//Freeing the allocated memory
deallocate2DArray(phi, N1);
deallocate2DArray(phi_exact, N1);
deallocate2DArray(res1, N1);
deallocate2DArray(res2, N2);
deallocate2DArray(delx1, N1);
deallocate2DArray(delx2, N2);
deallocate2DArray(q, N1);
return 0;
}