-
Notifications
You must be signed in to change notification settings - Fork 4
/
bert.py
85 lines (70 loc) · 3.78 KB
/
bert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
#Original by Kamal Raj see https://github.com/kamalkraj/BERT-SQuAD
#modified by Pierre Rouarch 16/12/2019. see #PR
from __future__ import absolute_import, division, print_function
import collections
import logging
import math
import numpy as np
import torch
#PR new : transformers instead of pytorch_transformers
from transformers import (WEIGHTS_NAME, BertConfig,
BertForQuestionAnswering, BertTokenizer)
from torch.utils.data import DataLoader, SequentialSampler, TensorDataset
from utils import (get_answer, input_to_squad_example,
squad_examples_to_features, to_list)
RawResult = collections.namedtuple("RawResult",
["unique_id", "start_logits", "end_logits"])
class QA:
def __init__(self,model_path: str, n_best_size=20):
self.max_seq_length = 384 #original 384
self.doc_stride = 128
self.do_lower_case = True
self.max_query_length =64# orig 64
self.n_best_size = n_best_size #orig 20 #PR we set this as an input parameter in QA
self.max_answer_length = 30
self.model, self.tokenizer = self.load_model(model_path)
if torch.cuda.is_available():
self.device = 'cuda'
else:
self.device = 'cpu'
self.model.to(self.device)
self.model.eval()
def load_model(self,model_path: str,do_lower_case=False):
#old version by Kam
#config = BertConfig.from_pretrained(model_path + "/bert_config.json")
#tokenizer = BertTokenizer.from_pretrained(model_path, do_lower_case=do_lower_case)
#model = BertForQuestionAnswering.from_pretrained(model_path, from_tf=False, config=config)
#PR use a standard https://huggingface.co/transformers/pretrained_models.html SQuAD fine Tune Model
tokenizer = BertTokenizer.from_pretrained(model_path)
model = BertForQuestionAnswering.from_pretrained(model_path)
return model, tokenizer
def predict(self,passage :str,question :str):
example = input_to_squad_example(passage,question)
features = squad_examples_to_features(example,self.tokenizer,self.max_seq_length,self.doc_stride,self.max_query_length)
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)
all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
all_example_index)
eval_sampler = SequentialSampler(dataset)
eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=1)
all_results = []
for batch in eval_dataloader:
batch = tuple(t.to(self.device) for t in batch)
with torch.no_grad():
inputs = {'input_ids': batch[0],
'attention_mask': batch[1],
'token_type_ids': batch[2]
}
example_indices = batch[3]
outputs = self.model(**inputs)
for i, example_index in enumerate(example_indices):
eval_feature = features[example_index.item()]
unique_id = int(eval_feature.unique_id)
result = RawResult(unique_id = unique_id,
start_logits = to_list(outputs[0][i]),
end_logits = to_list(outputs[1][i]))
all_results.append(result)
answer = get_answer(example,features,all_results,self.n_best_size,self.max_answer_length,self.do_lower_case)
return answer