-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetect.py
208 lines (167 loc) · 5.83 KB
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import operator
from scipy import misc
from imgproc import *
from loader import load_data
from skimage.measure import regionprops, label
from skimage.feature import hog
from skimage.transform import resize
from sklearn.neighbors import KNeighborsClassifier
IMAGE, BBOX = 0, 1
MIN_HEIGHT, MAX_HEIGHT = 0, 1
MIN_WIDTH, MAX_WIDTH = 2, 3
MIN_AREA = 4
LABEL, BBOX, PROB = 0, 1, 2
"""
Detect objects in an image by labelling the connected components and
proposing the sub-images that might contain some object.
This function is used for detecting the licence plate first and then
for segmenting the characters from the number. For improved accuracy,
some assumptions have been made: both plates and characters should
have certain size limits, otherwise the objects will be discarded.
Parameters
----------
img : numpy.ndarray
Image in which objects will be detected
size_limits : 5-tuple of Ints
Minimum and maximum width and height and minimum area of the sub-image
debug : Boolean
True if intermediate results should be saved
debug_file_name : string
Name of the files in which intermediate results are to be saved
Returns
-------
result : [(numpy.ndarray, 4-tuple)]
The result is a list of tuples. The first element of the tuple is the
sub-image in which the object has been detected and the second element
is the bounding box (relative to img)
"""
def detect_by_label(img, size_limits, debug=True, debug_file_name=None):
edge_img = canny(img, blur=False, debug=debug)
label_img = label(edge_img)
regions = regionprops(label_img)
result = []
if debug:
count = 0
for region in regions:
min_row, min_col, max_row, max_col = region.bbox
bbox_height = max_row - min_row
bbox_width = max_col - min_col
if region.area < size_limits[MIN_AREA] or\
bbox_height < size_limits[MIN_HEIGHT] or\
bbox_height > size_limits[MAX_HEIGHT] or\
bbox_width < size_limits[MIN_WIDTH] or\
bbox_width > size_limits[MAX_WIDTH]:
continue
sub_img = img[min_row:max_row, min_col:max_col, :]
result.append((sub_img, region.bbox))
if debug:
file_name = debug_file_name + "_" + str(count) + ".png"
misc.imsave(file_name, sub_img)
count = count + 1
return result
"""
Compute hog features for an array of images and return them
Parameters
----------
data : numpy.ndarray
Array of grayscale images
Returns
-------
features : List of numpy arrays
Each numpy array represents the hog features of an image
"""
def get_features(data):
features = []
for image in data:
feat, hog_image = hog(image, orientations=8, pixels_per_cell=(2, 2), \
cells_per_block=(1, 1), block_norm='L2-Hys',\
visualize=True, multichannel=False)
features.append(feat)
return features
"""
Load the data, create a K Nearest Neighbors Classifier and fit the data
Parameters
----------
Returns
-------
knn_classifier : KNeighborsClassifier
Return the newly created classifier
"""
def get_symbol_classifier():
train_data_dir = "./data/"
tr_X, tr_y = load_data(train_data_dir)
tr_feat = get_features(tr_X)
knn_classifier = KNeighborsClassifier(n_neighbors=10, weights='uniform', n_jobs=4)
knn_classifier.fit(tr_feat, tr_y)
return knn_classifier
"""
Detect possible licence plate symbols
First, possible licence plates are detected using detect_by_label. Then, each
possible plate is segmented further into characters. A knn classifier is used
for classifying the possible characters and a list of predictions is returned,
one tuple per possible plate. Each tuple has 3 elements, each of them being a
list: the predicted labels, the bounding boxes and the probabilities for
each of them
Parameters
----------
input_img : numpy.ndarray
Image in which the licence plate number should be detected
Returns
-------
predictions : List (of Lists of 3-tuples)
See above
"""
def detect_number(input_img):
plates_size_limits = (15, 50, 65, 180, 100)
symbols_size_limits = (13, 30, 3, 40, 5)
possible_plates = detect_by_label(input_img, plates_size_limits, \
debug=True, debug_file_name="debug/plate")
cnt_plate = 0
knn_classifier = get_symbol_classifier()
# this is an array of arrays (each prediction is an array)
predictions = []
for plate in possible_plates:
possible_symbols = detect_by_label(plate[IMAGE], symbols_size_limits, \
debug=True, debug_file_name="debug/symbol_" + str(cnt_plate))
possible_symbols = sorted(possible_symbols, key = lambda x: x[BBOX][1])
# any licence plate has at least 5 symbols
if len(possible_symbols) < 5:
continue
# convert the images to grayscale and resize them
data = [resize(grayscale(t[IMAGE]), (20, 20)) for t in possible_symbols]
test_feat = get_features(data)
predicted_labels = list(knn_classifier.predict(test_feat))
predicted_bboxes = [t[BBOX] for t in possible_symbols]
plate_coord_tuple = (plate[BBOX][0], plate[BBOX][1]) * 2
predicted_bboxes = [tuple(map(operator.add, b, plate_coord_tuple)) for b in predicted_bboxes]
predicted_probs = [max(l) for l in knn_classifier.predict_proba(test_feat)]
predictions.append((predicted_labels, predicted_bboxes, predicted_probs))
cnt_plate += 1
return predictions
"""
Find the prediction with the best average probability.
Parameters
----------
predictions : List
List of predictions computed using detect_number
Returns
-------
best_prediction : 3-tuple
"""
def find_best_prediction(predictions):
best_prediction = None
best_avg_prob = 0.0
for prediction in predictions:
avg_prob = 1.0 * sum(prediction[PROB]) / len(prediction[PROB])
if avg_prob > best_avg_prob:
best_prediction = prediction
best_avg_prob = avg_prob
labels = np.array(best_prediction[LABEL])
bboxes = np.array(best_prediction[BBOX])
probs = np.array(best_prediction[PROB])
print(probs)
labels = labels[np.where(probs >= 0.5)]
bboxes = bboxes[np.where(probs >= 0.5)]
probs = probs[np.where(probs >= 0.5)]
best_prediction = (labels, bboxes, probs)
return best_prediction