forked from disha101003/wisebucks.ai
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmonteCarlo7Day.py
242 lines (192 loc) · 9.14 KB
/
monteCarlo7Day.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import numpy as np
import pandas as pd
import yfinance as yf
import matplotlib.pyplot as plt
#Mote Carlo for 7 days
#start_price (initial stock price),
# days (number of simulation days),
# mu (average daily return of the stock),
# sigma (standard deviation of the stock’s daily returns)
#TO-DO for the next year: compare from previous year to next year
#change the value from one day to one month
#take data for all S&P 500
# uses yfinance library to get the stocks for analysis based on user inputs
start_date = input("Enter the start date (YYYY-MM-DD): ")
end_date = input("Enter the end date (YYYY-MM-DD): ")
stock_symbol = input("Enter stock ticker symbol (e.g., GOOGL): ")
prev_days = int(input("Enter the number of previous days you want to predict with in each simulation: "))
num_simulations = int(input("Enter the number of simulations you want in Monte simulation: "))
# Retrieve historical data for the specified stock and user-defined dates
data = yf.download(stock_symbol, start=start_date, end=end_date)
days = len(data) # Number of days in the data
dt = 1 / days # Time interval
# Random seed for reproducibility
np.random.seed(42)
actual_price = data['Close'].iloc[-1]
def monte_carlo(start_price, days, mu, sigma):
price = np.zeros(days + 7) # Initializes price with zeros
print(len(price))
price[0] = start_price
for x in range(1, days + 9):
total_shock = 0
for i in range(prev_days): #was initally for days
total_shock += np.random.normal(loc=mu, scale=sigma) # Accumulate shocks from previous days
shock = total_shock / prev_days # Average shock from previous days
drift = mu * dt # Expected change in price based on the average daily return
# computed by applying the drift and shock components to the previous day’s price and stores that in the price array
price[x] = price[x - 1] + (price[x - 1] * (drift + shock))
return price #compare all these prices curve and get accuracies for all of these prices
#new accuracy method
def accur(start_date, end_date, days, mu, sigma, start_price, prev_days):
price = np.zeros(days) # initializes prices with 0
price[0] = start_price
accuracies = []
print('hello')
def accuracies(start_price, days, mu, sigma, prev_days):
dt = 1 / days
price = np.zeros(days)
price[0] = start_price
accuracies = []
for x in range(1, days):
total_shock = 0
for day in range(days):
total_shock += np.random.normal(loc=mu, scale=sigma)
shock = total_shock / days
drift = mu * dt
price[x] = price[x - 1] + (price[x - 1] * (drift + shock))
predicted_price = price[x]
accuracy = (1 - abs(actual_price - predicted_price) / actual_price) * 100
accuracies.append(accuracy)
return accuracies
#accuracies to be plotted
# def accuracies(start_price, days, mu, sigma, prev_days):
# price = np.zeros(days) # initializes prices with 0
# price[0] = start_price
# accuracies = []
#
# for x in range(1, days):
# total_shock = 0
# for day in range(prev_days):
# total_shock += np.random.normal(loc=mu, scale=sigma) # Accumulate shocks from previous days
# shock = total_shock / prev_days # Average shock from previous days
# drift = mu * dt # Expected change in price based on the average daily return
#
# # computed by applying the drift and shock components to the previous day’s price and stores that in the price array
# price[x] = price[x - 1] + (price[x - 1] * (drift + shock))
#
# # Calculate accuracy for the current day and store it
# predicted_price = price[x]
# actual_price = data['Close'].iloc[x] # Actual price for the current day
# accuracy = (1 - abs(actual_price - predicted_price) / actual_price) * 100
# accuracies.append(accuracy)
#
# return accuracies
# Perform x amount of Monte Carlo simulations for the specified stock
sim = np.zeros(num_simulations)
plt.figure(figsize=(15, 8))
# need 7 different arrays, one for each of the days within the week for predicting the price for X stock
sim1 = np.zeros(num_simulations)
sim2 = np.zeros(num_simulations)
sim3 = np.zeros(num_simulations)
sim4 = np.zeros(num_simulations)
sim5 = np.zeros(num_simulations)
sim6 = np.zeros(num_simulations)
sim7 = np.zeros(num_simulations)
for i in range(num_simulations):
start_price = data['Adj Close'].iloc[0] #retrieves the adjusted closing prices of all the stocks in your datase
# and indexes into the 'Adj Close' column to select the specific stock symbole
mu = data['Adj Close'].pct_change().mean() #mean of daily percentage values entire year
sigma = data['Adj Close'].pct_change().std() #standard deviation of daily percentage values
result = monte_carlo(start_price, days, mu, sigma)
sim[i] = result[days-1] # final price is stored #TODO instead need to store final 7 day price here
sim1[i] = result[(days + 1) - 1]
sim2[i] = result[(days + 2) - 1]
sim3[i] = result[(days + 3) - 1]
sim4[i] = result[(days + 4) - 1]
sim5[i] = result[(days + 5) - 1]
sim6[i] = result[(days + 6) - 1]
sim7[i] = result[(days + 7) - 1]
plt.plot(result)
# for i in range (days, days + 8):
# result = monte_
day_1_predicted_price = np.median(np.sort(sim1))
day_2_predicted_price = np.median(np.sort(sim2))
day_3_predicted_price = np.median(np.sort(sim3))
day_4_predicted_price = np.median(np.sort(sim4))
day_5_predicted_price = np.median(np.sort(sim5))
day_6_predicted_price = np.median(np.sort(sim6))
day_7_predicted_price = np.median(np.sort(sim7))
plt.xlabel('Days')
plt.ylabel('Price')
plt.title(f'7 Day Price Prediction of GOOGL')
predicted_prices = [day_1_predicted_price, day_2_predicted_price, day_3_predicted_price,
day_4_predicted_price, day_5_predicted_price, day_6_predicted_price, day_7_predicted_price]
plt.plot(range(1, 8), predicted_prices, marker='o', label='Predicted Prices')
# Adding legend
plt.legend()
# Show the plot
plt.show()
#---------------------------------------------------------------------------------------------------------------------
#prints out predicted price for next day and accuracy of that value compared to actual data
predicted_price = np.median(np.sort(sim))
print("Predicted price for the next day after " + end_date + f" is ${predicted_price:.2f}")
accuracy = (1- abs(actual_price - predicted_price) / actual_price) * 100
print("Accuracy: {:.2f}%".format(accuracy))
# sets axes and title for Graph #1
plt.xlabel('Days')
plt.ylabel('Price')
plt.title(f'Monte Carlo Simulation for {stock_symbol}')
# Perform Monte Carlo simulation to get accuracies for each day
accuracies_per_day = accuracies(data['Close'].iloc[0], days, data['Close'].pct_change().mean(),
data['Close'].pct_change().std(), prev_days)
# Plotting accuracies for each day
plt.figure(figsize=(12, 6))
plt.plot(data.index[1:], accuracies_per_day, color='b', linewidth=1)
plt.xlabel('Date')
plt.ylabel('Accuracy (Decimal)')
plt.title(f'Accuracy of {stock_symbol} Predictions from {start_date} to {end_date}')
plt.xticks(rotation=45)
plt.tight_layout()
# Plot histogram
plt.figure(figsize=(10, 7)) #generates a histogram plot using the data from the sim array.
# the sim array contains the simulated final prices of each of the stocks
plt.hist(sim, bins=100)
plt.figtext(0.6, 0.7, "Mean: {:.2f}\nStd: {:.2f}\nStart Price: {:.2f}".format(sim.mean(), sim.std(), start_price))
# adds text annotations to the figure at specific coordinates. It displays the mean, standard deviation, and start price of the simulated prices
plt.title(f'Histogram for Monte Carlo Simulations of {stock_symbol}')
plt.xlabel('Price')
plt.ylabel('Frequency')
#write next graph here
# Initialize lists to store accuracies and predicted prices
accuracies_list = []
predicted_prices_list = []
arr = []
# Iterate through the range from -30 to 30 days
# Think about price your predicting, if oprice goes up as well, otherwise consider a failure.
# where the error builds o
# if you make current predicition to next day
# quantize our final score
# need an alogiirhtm to combine all the tests
# if it is anegative prediction, you do minus
# quantizing --> if predicting score is more (that way you factor + (predicited)/(actual)
# if you get a 60% movement accuracy better than S&P 500
for prev_days in range(-30, 30): #-30, 30 Predict whether it goes up or down
shifted_start_date = pd.to_datetime(start_date) + pd.DateOffset(days=prev_days)
shifted_end_date = pd.to_datetime(end_date) + pd.DateOffset(days=prev_days)
days = len(data)
dt = 1 / days
start_price = data['Close'].iloc[0]
mu = data['Close'].pct_change().mean()
sigma = data['Close'].pct_change().std()
accuracy_values = accuracies(start_price, days, mu, sigma, prev_days)
arr.extend(accuracy_values)
mean_accuracy = np.mean(arr)
accuracies_list.append(mean_accuracy)
predicted_prices_list.append(prev_days)
plt.figure(figsize=(10, 6))
plt.plot(predicted_prices_list, accuracies_list, marker='o', linestyle='-', color='b')
plt.xlabel('Days Shifted')
plt.ylabel('Accuracy (%)')
plt.title('Accuracy of Predictions vs. Days Shifted')
plt.grid(True)
plt.show()