forked from disha101003/wisebucks.ai
-
Notifications
You must be signed in to change notification settings - Fork 0
/
portfolio_generation.py
205 lines (171 loc) · 7.52 KB
/
portfolio_generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import os
import requests
import sqlalchemy as db
import yfinance as yf
import pandas as pd
from sqlalchemy import text
import time
from ib_insync import *
# importing module
import time
import openai
import pandas as pd
def create_db():
# create database:
engine = db.create_engine('sqlite:///atradebot.db', echo=True)
connection = engine.connect()
metadata = db.MetaData()
# create a single table:
stocks = db.Table('stocks', metadata,
db.Column('id', db.Integer(), primary_key=True),
db.Column('symbol', db.String(255), nullable=True),
db.Column('name', db.String(255), nullable=True),
db.Column('sector', db.String(255), nullable=True),
db.Column('industry', db.String(255), nullable=True),
db.Column('live_price', db.Float(), nullable=True),
db.Column('prev_close', db.Float(), nullable=True),
db.Column('open', db.Float(), nullable=True),
db.Column("volume", db.Integer(), nullable=True),
)
news = db.Table('news', metadata,
db.Column('id', db.Integer(), primary_key=True),
db.Column('symbol', db.String(255), nullable=True),
db.Column('title', db.String(255), nullable=True),
db.Column('news_date', db.String(255), nullable=True),
db.Column('url', db.String(255), nullable=True),
db.Column('source', db.String(255), nullable=True),
db.Column('text', db.String(255), nullable=True),
)
# create table in database:
metadata.create_all(engine)
return engine, connection, stocks, news
if __name__ == "__main__":
engine, connection, stocks, news = create_db()
connection.execute(text("PRAGMA journal_mode=WAL"))
# get list of stocks:
stock_df = pd.read_excel('src/atradebot/SP_500_Companies.xlsx')
symbols = stock_df['Symbol'].tolist()
ib = IB()
ib.connect('127.0.0.1', 7496, clientId=1)
news_providers = ib.reqNewsProviders()
codes = '+'.join(news_provider.code for news_provider in news_providers)
# get data for symbols:
for i in symbols[:5]:
trans = connection.begin_nested()
try:
# get stock info
try:
ticker = yf.Ticker(i)
info = ticker.info
stock_values = {
"symbol": i,
'name': info.get('shortName', 'NA'),
'sector': info.get('sector', 'NA'),
'industry': info.get('industry', 'NA'),
'live_price': info.get('regularMarketPrice', 0.0),
'prev_close': info.get('previousClose', 0.0),
'open': info.get('open', 0.0),
'volume': info.get('volume', 0)
}
# Insert the stock into the database
query_stock = db.insert(stocks)
ResultProxy = connection.execute(query_stock, [stock_values])
# Error handling for stock info fetching
except requests.exceptions.HTTPError as error_terminal:
print("HTTPError while fetching stock info for symbol:", i)
except Exception as e: # General exception catch
print("Unexpected error while fetching stock info for symbol:", i)
# Fetch and store news articles
try:
stock = Stock(i, 'SMART', 'USD')
ib.qualifyContracts(stock)
headlines = ib.reqHistoricalNews(stock.conId, codes, '', '', 100)
for headline in headlines:
article_date = headline.time.date()
article = ib.reqNewsArticle(headline.providerCode, headline.articleId)
# Insert the article into the database
news_info = {
'symbol': i,
'title': '', # Title not needed
'news_date': str(article_date),
'url': '', # URL not provided
'source': '', # Source not provided
'text': article.articleText
}
# Insert the news into the database
query_news = db.insert(news)
ResultProxy = connection.execute(query_news, [news_info])
# Error handling for news fetching
except requests.exceptions.HTTPError as error_terminal:
print("HTTPError while fetching news for symbol:", i)
except Exception as e: # General exception catch
print("Unexpected error while fetching news for symbol:", i)
trans.commit()
time.sleep(1)
# Error handling
except Exception as e: # General exception catch
print("Unexpected error:", e)
trans.rollback()
# Fetch and print the first 5 stocks from the database after processing
#query = db.select([data]).limit(5)
query = news.select().limit(5)
ResultProxy = connection.execute(query)
ResultSet = ResultProxy.fetchall()
i = 0
for result in ResultSet:
print(f"\n {i}")
print(result)
i = i+1
connection.execute(text("PRAGMA journal_mode=WAL"))
# Close the connection
connection.close()
openai.api_key = 'sk-'
def user_req():
num_stocks = 3
return num_stocks
stock_df = pd.read_excel('src/atradebot/SP_500_Companies.xlsx')
symbols = stock_df['Symbol'].tolist()
stock_df['sentiment_counter'] = 0
i = 0
for result in ResultSet:
print(result[1])
print(result[5])
print(type(result[1]))
print(type(result[5]))
text_to_analyze = result[2] + ' ' + result[6]
messages = [
{"role": "user", "content": f"Analyze the sentiment of the following text and provide a one-word sentiment: '{text_to_analyze}'. The answer should just be 1 word."}
]
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=messages
)
# Extract the response content
sentiment = response['choices'][0]['message']['content']
sentiment = sentiment.lower()
print(sentiment)
if (sentiment == "positive"):
sentiment_num = 1
elif (sentiment == "negative"):
sentiment_num = -1
elif (sentiment == "neutral"):
sentiment_num = 0
else:
sentiment_num = 0
sent_count_index_x = symbols.index(result[1])
stock_df.at[sent_count_index_x, 'sentiment_counter'] += sentiment_num
i = i + 1
if ( i >= 3):
# adding 2 seconds time delay
time.sleep(60)
i = 0
num_stocks = user_req()
largest_values = stock_df['sentiment_counter'].nlargest(num_stocks)
print(stock_df)
# Convert to a DataFrame with index numbers and values
result_df = pd.DataFrame({
'Index': largest_values.index,
'Value': largest_values.values
})
for i in list(result_df['Index']):
print("Stock Name:", stock_df.loc[i, 'Symbol'])