-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_cnn_256.py
100 lines (87 loc) · 4.18 KB
/
train_cnn_256.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import os
import argparse
import numpy as np
import tensorflow as tf
import datetime
from tensorflow.python.keras import backend as K
#from spade import GauGAN
from spade.models.model import CNNSpade
from sampler import Sampler, augmentImage, colorize
def parse():
parser = argparse.ArgumentParser()
parser.add_argument('--path_h5',type=str)
parser.add_argument('--path_trn',type=str)
parser.add_argument('--path_val',type=str)
parser.add_argument('--output_path',type=str,default=".")
return parser.parse_args()
args = parse()
BATCH_SIZE = 32
EPOCHS = 100
TRN_SIS = Sampler(args.path_h5, args.path_trn, hw=256)
VAL_SIS = Sampler(args.path_h5, args.path_val, hw=256)
max_steps = TRN_SIS.num_samples//BATCH_SIZE
max_steps_prct = max_steps//10
PRINT_STEP = max_steps//10
train_ds = TRN_SIS.getDataset()
val_ds = VAL_SIS.getDataset()
train_ds = train_ds.prefetch(1000)
train_ds = train_ds.map(lambda x, y: augmentImage(x, y), num_parallel_calls=10)
train_ds = train_ds.shuffle(1000)
train_ds = train_ds.batch(BATCH_SIZE)
val_ds = val_ds.prefetch(1000)
val_ds = val_ds.batch(BATCH_SIZE)
gaugan = CNNSpade(256, BATCH_SIZE, latent_dim=256)
gaugan.compile()
current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
try:
os.mkdir(os.path.join(args.ouput_path,'models'))
except:
pass
try:
os.mkdir(os.path.join(args.output_path,'models',current_time))
except:
pass
train_log_dir = os.path.join(args.output_path,'tensorboard/' + current_time + '/train')
test_log_dir = os.path.join(args.output_path,'tensorboard/' + current_time + '/test')
train_writer = tf.summary.create_file_writer(train_log_dir)
val_writer = tf.summary.create_file_writer(test_log_dir)
for epoch in range(EPOCHS):
for step, (x_train, y_train) in enumerate(train_ds):
if x_train.shape[0] != BATCH_SIZE:
continue
metrics, y_ = gaugan.train_step(x_train, y_train)
if step%PRINT_STEP == 0:
template = 'Train epoch {} {}%, '+', '.join([metric+': {}'for metric in metrics.keys()])+'.'
print (template.format(epoch+1,int(100*step/max_steps),*metrics.values()))
with train_writer.as_default():
hm_in = tf.map_fn(lambda img: colorize(img, cmap='jet'), tf.expand_dims(x_train[:,:,:,1],-1))
hm_pred = tf.map_fn(lambda img: colorize(img, cmap='jet'), y_)
hm_true = tf.map_fn(lambda img: colorize(img, cmap='jet'), y_train)
tf.summary.image('GT', hm_true, step=epoch*max_steps+step, max_outputs=3, description=None)
tf.summary.image('pred', hm_pred, step=epoch*max_steps+step, max_outputs=3, description=None)
tf.summary.image('input_hmap', hm_in, step=epoch*max_steps+step, max_outputs=3, description=None)
tf.summary.image('input_image', tf.expand_dims(x_train[:,:,:,0],-1)+0.5, step=epoch*max_steps+step, max_outputs=3, description=None)
for key in metrics.keys():
tf.summary.scalar(key, metrics[key], step = epoch*max_steps+step)
tf.summary.flush()
for step, (x_train, y_train) in enumerate(val_ds):
if x_train.shape[0] != BATCH_SIZE:
continue
x_val = x_train
y_val = y_train
metrics, y_ = gaugan.val_step(x_val, y_val)
template = 'Valid epoch {}, '+', '.join([metric+': {}'for metric in metrics.keys()])+'.'
print (template.format(epoch+1,*metrics.values()))
with val_writer.as_default():
hm_in = tf.map_fn(lambda img: colorize(img, cmap='jet'), tf.expand_dims(x_val[:,:,:,1],-1))
hm_pred = tf.map_fn(lambda img: colorize(img, cmap='jet'), y_)
hm_true = tf.map_fn(lambda img: colorize(img, cmap='jet'), y_val)
tf.summary.image('GT', hm_true, step=epoch*max_steps+step, max_outputs=9, description=None)
tf.summary.image('pred', hm_pred, step=epoch*max_steps+step, max_outputs=9, description=None)
tf.summary.image('input_hmap', hm_in, step=epoch*max_steps+step, max_outputs=9, description=None)
tf.summary.image('input_image', tf.expand_dims(x_val[:,:,:,0],-1)+0.5, step=epoch*max_steps+step, max_outputs=9, description=None)
for key in metrics.keys():
tf.summary.scalar(key, metrics[key], step = epoch*max_steps+step)
tf.summary.flush()
checkpoint_path = os.path.join(args.output_path,'models',current_time,'epoch_'+str(epoch))
gaugan.save(checkpoint_path)