-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDiameterOfBinayTree.cpp
126 lines (102 loc) · 2.99 KB
/
DiameterOfBinayTree.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
#include <bits/stdc++.h>
using namespace std;
struct Node {
int data;
struct Node* left;
struct Node* right;
};
Node* newNode(int val) {
Node* temp = new Node;
temp->data = val;
temp->left = NULL;
temp->right = NULL;
return temp;
}
Node* buildTree(string str) {
// Corner Case
if (str.length() == 0 || str[0] == 'N') return NULL;
// Creating vector of strings from input
// string after spliting by space
vector<string> ip;
istringstream iss(str);
for (string str; iss >> str;) ip.push_back(str);
// Create the root of the tree
Node* root = newNode(stoi(ip[0]));
// Push the root to the queue
queue<Node*> queue;
queue.push(root);
// Starting from the second element
int i = 1;
while (!queue.empty() && i < ip.size()) {
// Get and remove the front of the queue
Node* currNode = queue.front();
queue.pop();
// Get the current node's value from the string
string currVal = ip[i];
// If the left child is not null
if (currVal != "N") {
// Create the left child for the current node
currNode->left = newNode(stoi(currVal));
// Push it to the queue
queue.push(currNode->left);
}
// For the right child
i++;
if (i >= ip.size()) break;
currVal = ip[i];
// If the right child is not null
if (currVal != "N") {
// Create the right child for the current node
currNode->right = newNode(stoi(currVal));
// Push it to the queue
queue.push(currNode->right);
}
i++;
}
return root;
}
class Solution {
public:
// Approach 1 O(n^2)
int height(Node *node) {
if (node == NULL) return 0;
return 1 + max(height(node->left), height(node->right));
}
int diameter1(Node* root) {
if(root == NULL) return 0;
int ld = diameter1(root->left);
int rd = diameter1(root->right);
int f = height(root->left) + height(root->right) + 1;
return max(f, max(ld, rd));
}
// Approach 2 O(n)
// Instead of calling height (which is recursive itself) on every
// recursive call of diameter, calculate the height with diameter
// call
pair<int /*height*/, int /*diameter*/> findDiameter(Node* root) {
if (root == NULL) return {0, 0};
pair<int, int> ld = findDiameter(root->left);
pair<int, int> rd = findDiameter(root->right);
pair<int, int> p;
// calculate height and store
p.first = max(ld.first, rd.first) + 1;
int f = ld.first + rd.first + 1;
p.second = max(f, max(ld.second, rd.second));
return p;
}
int diameter(Node* root) {
return findDiameter(root).second;
}
};
int main() {
int t;
scanf("%d\n", &t);
while (t--) {
string s;
getline(cin, s);
Node* root = buildTree(s);
Solution ob;
cout << ob.diameter(root) << endl;
}
return 0;
}