Skip to content

How selecting carefully the next item based on a cognitive model of the user in an associative learning task can improve the learning process?

License

Notifications You must be signed in to change notification settings

AurelienNioche/ActiveTeachingModel

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ActiveTeachingModel

This repo is link to Nioche et al. (2021).

Data

A clean release of the dataset is accessible on Zenodo. It contains not only the data but also demographic information of the participants (age, gender, native language, other spoken languages), and the stimuli used (character and meaning).

Code

Note: All commands are given based on the assumption of using the Homebrew's package manager (MacOs).

Dependencies

Python 3

  • Install Python3

    brew install python3

  • Create a virtual environment

    sudo apt-get install virtualenv cd /var/www/html/ActiveTeachingServer virtualenv -p python3 venv source venv/bin/activate pip install -r requirements.txt

Local

Create the config files:

gen_config_files.py

Run:

python main_local.py

Data will be save under data/triton/<trial_name>.

For exploratory simulations (n learnt leitner):

python explo_leitner.py

Data will be save under data/explo_leitner/<param used>.

Triton (Aalto University Cluster)

Create the config files & run job

gen_config_files.py

Data will be save under data/triton/<trial_name>

See job status

sacct -u <user>

or

slurm q

Count number of results files

ls data/triton/<trial_name> | wc -l

Check the last 10 lines of the log file

tail -f triton_out/

or for seeing the complete file:

cat triton_out/debug.out

cancel the job

scancel <job_id>

check the resources used by the job

seff <job_id>

Reproduce figures

Unpack artificial data

cd data/triton
unzstd n_learnt_leitner.tar.zst
tar -xvf n_learnt_leitner.tar

Run scripts

python make_fig_artificial.py
python make_fig_human.py

About

How selecting carefully the next item based on a cognitive model of the user in an associative learning task can improve the learning process?

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •