-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path53.maximum-subarray.py
42 lines (42 loc) · 1.16 KB
/
53.maximum-subarray.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#
# @lc app=leetcode id=53 lang=python3
#
# [53] Maximum Subarray
#
# https://leetcode.com/problems/maximum-subarray/description/
#
# algorithms
# Easy (43.00%)
# Total Accepted: 481.4K
# Total Submissions: 1.1M
# Testcase Example: '[-2,1,-3,4,-1,2,1,-5,4]'
#
# Given an integer array nums, find the contiguous subarray (containing at
# least one number) which has the largest sum and return its sum.
#
# Example:
#
#
# Input: [-2,1,-3,4,-1,2,1,-5,4],
# Output: 6
# Explanation: [4,-1,2,1] has the largest sum = 6.
#
#
# Follow up:
#
# If you have figured out the O(n) solution, try coding another solution using
# the divide and conquer approach, which is more subtle.
#
#
# 关键在于找到开始的位置
# 如果前面的累计和加上当前的数比当前数还小,则从当前数开始的累计和一定比之前的累计和大
# 另外还要考虑负数开头的情况
class Solution:
def maxSubArray(self, nums: List[int]) -> int:
max_sum, cur_sum = nums[0], nums[0]
for item in nums[1:]:
cur_sum += item
if cur_sum < item:
cur_sum = item
max_sum = max(max_sum, cur_sum)
return max_sum