-
Notifications
You must be signed in to change notification settings - Fork 0
/
HandTrackingModule.py
72 lines (51 loc) · 2.29 KB
/
HandTrackingModule.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import cv2
import mediapipe as mp
import time
class handDetector():
def __init__(self, mode = False, maxHands = 2, modelComplexity = 1, detectionConfidence = 0.5, trackingConfidence = 0.5):
self.mode = mode
self.maxHands = maxHands
self.modelComplexity = modelComplexity
self.detectionConfidence = detectionConfidence
self.trackingConfidence = trackingConfidence
self.mpHands = mp.solutions.hands
self.hands = self.mpHands.Hands(self.mode, self.maxHands, self.modelComplexity, self.detectionConfidence, self.trackingConfidence)
self.mpDraw = mp.solutions.drawing_utils
def findHands(self, img, draw = True):
imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
self.results = self.hands.process(imgRGB)
if self.results.multi_hand_landmarks:
for hand_landmarks in self.results.multi_hand_landmarks:
if draw:
self.mpDraw.draw_landmarks(img, hand_landmarks, self.mpHands.HAND_CONNECTIONS)
return img
def findPosition(self, img, handNumber = 0, draw = True):
landmark_list = []
if self.results.multi_hand_landmarks:
myHand = self.results.multi_hand_landmarks[handNumber]
for id, landmark in enumerate(myHand.landmark):
h, w, c = img.shape
cx, cy = int(landmark.x * w), int(landmark.y * h)
landmark_list.append([id, cx, cy])
if draw:
cv2.circle(img, (cx, cy), 5, (255, 255, 0), cv2.FILLED)
return landmark_list
def main():
cap = cv2.VideoCapture(0)
prev_time = 0
curr_time = 0
detector = handDetector()
while True:
success, img = cap.read()
img = detector.findHands(img)
# landmark_list = detector.findPosition(img)
# if len(landmark_list) != 0:
# print(landmark_list[4])
curr_time = time.time()
fps = 1 / (curr_time - prev_time)
prev_time = curr_time
cv2.putText(img, f'fps: {int(fps)}', (20, 40), cv2.FONT_HERSHEY_PLAIN, 2, (255, 255, 255), 2)
cv2.imshow("Image", img)
cv2.waitKey(1)
if __name__ == "__main__":
main()