Skip to content

SHARK - High Performance Machine Learning Distribution

License

Notifications You must be signed in to change notification settings

AyaanShah2204/SHARK

Β 
Β 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

SHARK

High Performance Machine Learning Distribution

Nightly Release Validate torch-models on Shark Runtime

Prerequisites - Drivers

Install your Windows hardware drivers

  • [AMD RDNA Users] Download the latest driver here.
  • [macOS Users] Download and install the 1.3.216 Vulkan SDK from here. Newer versions of the SDK will not work.
  • [Nvidia Users] Download and install the latest CUDA / Vulkan drivers from here

Linux Drivers

  • MESA / RADV drivers wont work with FP16. Please use the latest AMGPU-PRO drivers (non-pro OSS drivers also wont work) or the latest NVidia Linux Drivers.

Other users please ensure you have your latest vendor drivers and Vulkan SDK from here and if you are using vulkan check vulkaninfo works in a terminal window

Quick Start for SHARK Stable Diffusion for Windows 10/11 Users

Install the Driver from Prerequisites above

Download the stable release

Double click the .exe and you should have the UI in the browser.

If you have custom models put them in a models/ directory where the .exe is.

Enjoy.

More installation notes * We recommend that you download EXE in a new folder, whenever you download a new EXE version. If you download it in the same folder as a previous install, you must delete the old `*.vmfb` files with `rm *.vmfb`. You can also use `--clear_all` flag once to clean all the old files. * If you recently updated the driver or this binary (EXE file), we recommend you clear all the local artifacts with `--clear_all`

Running

  • Open a Command Prompt or Powershell terminal, change folder (cd) to the .exe folder. Then run the EXE from the command prompt. That way, if an error occurs, you'll be able to cut-and-paste it to ask for help. (if it always works for you without error, you may simply double-click the EXE)
  • The first run may take few minutes when the models are downloaded and compiled. Your patience is appreciated. The download could be about 5GB.
  • You will likely see a Windows Defender message asking you to give permission to open a web server port. Accept it.
  • Open a browser to access the Stable Diffusion web server. By default, the port is 8080, so you can go to http://localhost:8080/.

Stopping

  • Select the command prompt that's running the EXE. Press CTRL-C and wait a moment or close the terminal.
Advanced Installation (Only for developers)

Advanced Installation (Windows, Linux and macOS) for developers

Check out the code

git clone https://github.com/nod-ai/SHARK.git
cd SHARK

Setup your Python VirtualEnvironment and Dependencies

Windows 10/11 Users

  • Install the latest Python 3.11.x version from here

  • Install Git for Windows from here

Allow the install script to run in Powershell

set-executionpolicy remotesigned

Setup venv and install necessary packages (torch-mlir, nodLabs/Shark, ...)

./setup_venv.ps1 #You can re-run this script to get the latest version

Linux / macOS Users

./setup_venv.sh
source shark.venv/bin/activate

Run Stable Diffusion on your device - WebUI

Windows 10/11 Users

(shark.venv) PS C:\g\shark> cd .\apps\stable_diffusion\web\
(shark.venv) PS C:\g\shark\apps\stable_diffusion\web> python .\index.py

Linux / macOS Users

(shark.venv) > cd apps/stable_diffusion/web
(shark.venv) > python index.py

Access Stable Diffusion on http://localhost:8080/?__theme=dark

webui

Run Stable Diffusion on your device - Commandline

Windows 10/11 Users

(shark.venv) PS C:\g\shark> python .\apps\stable_diffusion\scripts\main.py --app="txt2img" --precision="fp16" --prompt="tajmahal, snow, sunflowers, oil on canvas" --device="vulkan"

Linux / macOS Users

python3.11 apps/stable_diffusion/scripts/main.py --app=txt2img --precision=fp16 --device=vulkan --prompt="tajmahal, oil on canvas, sunflowers, 4k, uhd"

You can replace vulkan with cpu to run on your CPU or with cuda to run on CUDA devices. If you have multiple vulkan devices you can address them with --device=vulkan://1 etc

The output on a AMD 7900XTX would look something like:

Average step time: 47.19188690185547ms/it
Clip Inference time (ms) = 109.531
VAE Inference time (ms): 78.590

Total image generation time: 2.5788655281066895sec

Here are some samples generated:

tajmahal, snow, sunflowers, oil on canvas_0

a photo of a crab playing a trumpet

Find us on SHARK Discord server if you have any trouble with running it on your hardware.

Binary Installation

Setup a new pip Virtual Environment

This step sets up a new VirtualEnv for Python

python --version #Check you have 3.11 on Linux, macOS or Windows Powershell
python -m venv shark_venv
source shark_venv/bin/activate   # Use shark_venv/Scripts/activate on Windows

# If you are using conda create and activate a new conda env

# Some older pip installs may not be able to handle the recent PyTorch deps
python -m pip install --upgrade pip

macOS Metal users please install https://sdk.lunarg.com/sdk/download/latest/mac/vulkan-sdk.dmg and enable "System wide install"

Install SHARK

This step pip installs SHARK and related packages on Linux Python 3.8, 3.10 and 3.11 and macOS / Windows Python 3.11

pip install nodai-shark -f https://nod-ai.github.io/SHARK/package-index/ -f https://llvm.github.io/torch-mlir/package-index/ -f  https://nod-ai.github.io/SHARK-Runtime/pip-release-links.html --extra-index-url https://download.pytorch.org/whl/nightly/cpu

Run shark tank model tests.

pytest tank/test_models.py

See tank/README.md for a more detailed walkthrough of our pytest suite and CLI.

Download and run Resnet50 sample

curl -O https://raw.githubusercontent.com/nod-ai/SHARK/main/shark/examples/shark_inference/resnet50_script.py
#Install deps for test script
pip install --pre torch torchvision torchaudio tqdm pillow gsutil --extra-index-url https://download.pytorch.org/whl/nightly/cpu
python ./resnet50_script.py --device="cpu"  #use cuda or vulkan or metal

Download and run BERT (MiniLM) sample

curl -O https://raw.githubusercontent.com/nod-ai/SHARK/main/shark/examples/shark_inference/minilm_jit.py
#Install deps for test script
pip install transformers torch --extra-index-url https://download.pytorch.org/whl/nightly/cpu
python ./minilm_jit.py --device="cpu"  #use cuda or vulkan or metal
Development, Testing and Benchmarks

If you want to use Python3.11 and with TF Import tools you can use the environment variables like: Set USE_IREE=1 to use upstream IREE

# PYTHON=python3.11 VENV_DIR=0617_venv IMPORTER=1 ./setup_venv.sh 

Run any of the hundreds of SHARK tank models via the test framework

python -m  shark.examples.shark_inference.resnet50_script --device="cpu" # Use gpu | vulkan
# Or a pytest
pytest tank/test_models.py -k "MiniLM"

How to use your locally built IREE / Torch-MLIR with SHARK

If you are a Torch-mlir developer or an IREE developer and want to test local changes you can uninstall the provided packages with pip uninstall torch-mlir and / or pip uninstall iree-compiler iree-runtime and build locally with Python bindings and set your PYTHONPATH as mentioned here for IREE and here for Torch-MLIR.

How to use your locally built Torch-MLIR with SHARK:

1.) Run `./setup_venv.sh in SHARK` and activate `shark.venv` virtual env.
2.) Run `pip uninstall torch-mlir`.
3.) Go to your local Torch-MLIR directory.
4.) Activate mlir_venv virtual envirnoment.
5.) Run `pip uninstall -r requirements.txt`.
6.) Run `pip install -r requirements.txt`.
7.) Build Torch-MLIR.
8.) Activate shark.venv virtual environment from the Torch-MLIR directory.
8.) Run `export PYTHONPATH=`pwd`/build/tools/torch-mlir/python_packages/torch_mlir:`pwd`/examples` in the Torch-MLIR directory.
9.) Go to the SHARK directory.

Now the SHARK will use your locally build Torch-MLIR repo.

Benchmarking Dispatches

To produce benchmarks of individual dispatches, you can add --dispatch_benchmarks=All --dispatch_benchmarks_dir=<output_dir> to your pytest command line argument.
If you only want to compile specific dispatches, you can specify them with a space seperated string instead of "All". E.G. --dispatch_benchmarks="0 1 2 10"

For example, to generate and run dispatch benchmarks for MiniLM on CUDA:

pytest -k "MiniLM and torch and static and cuda" --benchmark_dispatches=All -s --dispatch_benchmarks_dir=./my_dispatch_benchmarks                                                                                

The given command will populate <dispatch_benchmarks_dir>/<model_name>/ with an ordered_dispatches.txt that lists and orders the dispatches and their latencies, as well as folders for each dispatch that contain .mlir, .vmfb, and results of the benchmark for that dispatch.

if you want to instead incorporate this into a python script, you can pass the dispatch_benchmarks and dispatch_benchmarks_dir commands when initializing SharkInference, and the benchmarks will be generated when compiled. E.G:

shark_module = SharkInference(
        mlir_model,
        func_name,
        device=args.device,
        mlir_dialect="tm_tensor",
        dispatch_benchmarks="all",
        dispatch_benchmarks_dir="results"
    )

Output will include:

  • An ordered list ordered-dispatches.txt of all the dispatches with their runtime
  • Inside the specified directory, there will be a directory for each dispatch (there will be mlir files for all dispatches, but only compiled binaries and benchmark data for the specified dispatches)
  • An .mlir file containing the dispatch benchmark
  • A compiled .vmfb file containing the dispatch benchmark
  • An .mlir file containing just the hal executable
  • A compiled .vmfb file of the hal executable
  • A .txt file containing benchmark output

See tank/README.md for further instructions on how to run model tests and benchmarks from the SHARK tank.

API Reference

Shark Inference API


from shark.shark_importer import SharkImporter

# SharkImporter imports mlir file from the torch, tensorflow or tf-lite module.

mlir_importer = SharkImporter(
    torch_module,
    (input),
    frontend="torch",  #tf, #tf-lite
)
torch_mlir, func_name = mlir_importer.import_mlir(tracing_required=True)

# SharkInference accepts mlir in linalg, mhlo, and tosa dialect.

from shark.shark_inference import SharkInference
shark_module = SharkInference(torch_mlir, func_name, device="cpu", mlir_dialect="linalg")
shark_module.compile()
result = shark_module.forward((input))

Example demonstrating running MHLO IR.

from shark.shark_inference import SharkInference
import numpy as np

mhlo_ir = r"""builtin.module  {
      func.func @forward(%arg0: tensor<1x4xf32>, %arg1: tensor<4x1xf32>) -> tensor<4x4xf32> {
        %0 = chlo.broadcast_add %arg0, %arg1 : (tensor<1x4xf32>, tensor<4x1xf32>) -> tensor<4x4xf32>
        %1 = "mhlo.abs"(%0) : (tensor<4x4xf32>) -> tensor<4x4xf32>
        return %1 : tensor<4x4xf32>
      }
}"""

arg0 = np.ones((1, 4)).astype(np.float32)
arg1 = np.ones((4, 1)).astype(np.float32)
shark_module = SharkInference(mhlo_ir, func_name="forward", device="cpu", mlir_dialect="mhlo")
shark_module.compile()
result = shark_module.forward((arg0, arg1))

Supported and Validated Models

SHARK is maintained to support the latest innovations in ML Models:

TF HuggingFace Models SHARK-CPU SHARK-CUDA SHARK-METAL
BERT πŸ’š πŸ’š πŸ’š
DistilBERT πŸ’š πŸ’š πŸ’š
GPT2 πŸ’š πŸ’š πŸ’š
BLOOM πŸ’š πŸ’š πŸ’š
Stable Diffusion πŸ’š πŸ’š πŸ’š
Vision Transformer πŸ’š πŸ’š πŸ’š
ResNet50 πŸ’š πŸ’š πŸ’š

For a complete list of the models supported in SHARK, please refer to tank/README.md.

Communication Channels

Related Projects

IREE Project Channels
MLIR and Torch-MLIR Project Channels

License

nod.ai SHARK is licensed under the terms of the Apache 2.0 License with LLVM Exceptions. See LICENSE for more information.

About

SHARK - High Performance Machine Learning Distribution

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 73.8%
  • C 15.4%
  • C++ 6.9%
  • Jupyter Notebook 2.1%
  • CMake 0.8%
  • CSS 0.5%
  • Other 0.5%