-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathstreamlit_app.py
43 lines (33 loc) · 1.35 KB
/
streamlit_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
# Import necessary libraries
import streamlit as st
import pickle
# Load the pickled objects
with open('vectorizer.pkl', 'rb') as file:
vectorizer = pickle.load(file)
with open('voting_classifier.pkl', 'rb') as file:
voting_classifier = pickle.load(file)
# Deploy the application on Streamlit
def classify_spam(message):
# Preprocess the input message using vectorizer
processed_message = vectorizer.transform([message])
# Generate predictions using the voting classifier
prediction = voting_classifier.predict(processed_message)
return prediction[0]
# Set the page title and description
def main():
st.title("Email Classification")
st.markdown("This web application allows you to classify emails as either spam or not spam.")
# Text input for users to enter a message
user_input = st.text_input("Enter the email content below:")
# Button for initiating the prediction process
if st.button("Classify"):
if user_input:
# Classify the message based on the input
prediction = classify_spam(user_input)
# Display the prediction result
if prediction == 'spam':
st.error("This message has been categorized as spam.")
else:
st.success("This message has been categorized as not spam.")
if __name__ == '__main__':
main()